期刊文献+

求解动态优化问题的改进多种群引力搜索算法 被引量:5

Improved multi-population gravitational search algorithm for dynamic optimization problems
下载PDF
导出
摘要 针对目前多种群算法解决动态优化问题时存在过多冗余计算、寻优精度低等缺陷,提出多种群串行搜索的引力搜索算法。采用多种群串行搜索的策略,便于当前子种群利用其他已收敛种群的进化信息。为解决多峰重复搜索而带来的冗余计算问题,提出具有约束条件的初始化策略,给予初始化的粒子以方向性的指引,避免其初始化在已寻峰区域;采用距离判决的策略发现并终止多峰重复搜索。为全面的监测环境变化及解决多样性丢失问题,提出一种监测环境策略及追踪策略。研究结果表明:所提算法,面对不同的环境变化程度以及不同的峰值数量,其求解精度都优于其他7种对比算法的求解精度,证明该算法在求解动态优化问题上的优越性。 To improve the redundant computing and low accuracy of solving dynamic optimization problems(DOPs) for multi-population algorithm, a novel improved multi-population gravitational search algorithm(IMGSA) was proposed. In IMGSA, the multi-population serial strategy was good for the present subpopulation to use evolutionary information of convergence population. A constraint initialization strategy was proposed to reduce the redundant computing which was generated by multiple populations searching repeatedly. Simultaneously, a distance decision strategy was used to stop multiple populations searching. Eventually, a monitoring and tracking strategy was used to monitor the environmental change and track the local peaks. The results show that IMGSA has a better performance in solving DOPs than those of other seven dynamic algorithms in different degree of environmental change or different peak number. It can prove the validity of proposed algorithm.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第9期3325-3331,共7页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(61175126) 中央高校基本科研业务费专项资金资助项目(HEUCFZ1209) 高等学校博士学科点专项科研基金项目资助课题(20112304110009) 黑龙江省博士后基金资助项目(LBH-Z12073) 辽宁省教育厅科学研究一般项目(L2012458) 辽宁省博士科研启动基金资助项目(20120511)~~
关键词 引力搜索算法(GSA) 动态优化问题(DOPs) 多种群策略 gravitational search algorithm (GSA) dynamic optimization problems (DOPs) multi-population strategy
  • 相关文献

参考文献15

  • 1施荣华,朱炫滋,董健,谢羽嘉,郭迎.基于粒子群-遗传混合算法的MIMO雷达布阵优化[J].中南大学学报(自然科学版),2013,44(11):4499-4505. 被引量:10
  • 2朱庆保,徐晓晴,朱世娟.一种新的求解动态连续优化的分层粒子群算法[J].控制与决策,2013,28(10):1573-1577. 被引量:6
  • 3高平安,蔡自兴,余伶俐.一种基于多子群的动态优化算法[J].中南大学学报(自然科学版),2009,40(3):731-736. 被引量:6
  • 4Halder U, Das S, Maity D. A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments[J]. IEEE Transactions on Cybernetics, 2013, 43(3) 881-897.
  • 5Zuo X, Xiao L. A DE and PSO based hybrid algorithm for dynamic optimization problems[J]. Soft Computing, 2014, 18(7): 1405-1424.
  • 6Blackwell T, Branke J. Multiswarrns, exclusion, and anti- convergence in dynamic environments[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(4): 459-472.
  • 7Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: A gravitational search algorithm[J]. Information Sciences, 2009, 179(13): 2232-2248.
  • 8YANG Shengxiang, LI Changhe. A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(6): 959-974.
  • 9刘黎黎,李国家,汪定伟.动态环境下带有非线性效应的复合粒子群优化算法[J].控制理论与应用,2012,29(10):1253-1262. 被引量:4
  • 10Branke J. Memory enhanced evolutionary algorithms for changing optimization problems[C]// Proceedings of the 1999 Congress on Evolutionary Computation-CEC99. Washington, DC, United States: IEEE, 1999: 1875-1882.

二级参考文献53

  • 1窦全胜,周春光,徐中宇,潘冠宇.动态优化环境下的群核进化粒子群优化方法[J].计算机研究与发展,2006,43(1):89-95. 被引量:20
  • 2姚坤,李菲菲,刘希玉.一种基于PSO和GA的混合算法[J].计算机工程与应用,2007,43(6):62-64. 被引量:18
  • 3张著洪,钱淑渠.自适应免疫算法及其对动态函数优化的跟踪[J].模式识别与人工智能,2007,20(1):85-94. 被引量:14
  • 4Eberhart R C, SHI Yu-hui. Tracking and optimizing dynamic systems with particle swarms[C]//Proceedings of Congress on Evolutionary and Computation, Piscataway. New York: IEEE,2001: 94-100.
  • 5J1N Yao-chu, Branke J. Evolutionary optimization in uncertain environments: A survey[J]. IEEE Transactions on Evolutionary Computation, 2005, 9(3): 303-317.
  • 6Carlisle A, Dozier Q Tracking changing extrema with adaptive particle swarm optimizer[C]//Proceedings of the World Automation Congress. Orlando, 2002: 265-270.
  • 7HU Xiao-hui, Eberhart R C. Adaptive particle swarm optimization: detection and response to dynamic systems[C]// Proceedings of the IEEE Congress on Evolutionary Computation. Honolulu, 2002: 1666-1670.
  • 8Janson S, Middendorf M. A hierarchical particle swarm optimizer for dynamic optimization problems[C]//Applications of Evolutionary Computing. Raidl G R. Berlin: Springer-Verlag, 2004: 513-534.
  • 9Parrot D, LI Xiao-dong. Locating and tracking multiple dynamic optima by a particle swarm model using speciation[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(4): 440-458.
  • 10DU Wei-lin, LI Bin. Multi-strategy ensemble particle swarm optimization for dynamic optimization[J]. Information Science, 2008, 178: 3096-3109.

共引文献22

同被引文献56

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部