期刊文献+

基于可变客流的接运公交网络优化 被引量:4

Feeder Bus Network Design Based on Variable Demand
下载PDF
导出
摘要 在充分考虑目的地非地铁站的变动客流和搭乘固定公交的既有客流基础上,基于多对多客流模式,以管理者、出行者和社会运营费用的总费用最小为目标,构建接运公交线路的优化模型.模型考虑了原本私家车出行客流和固定公交出行客流选择接运公交出行的可能性,应用Logit模型进行流量分配,并采用遗传算法对问题求解,获得了最优的接运公交网络,变动客流在接运公交网络中的第一公交站和换乘的地铁站.研究结果表明,接运公交线路方案与其占全程广义出行费用的比例密切相关,故有必要将其从全程视角进行优化. This study takes account of the private car demands whose destinations are not subway station and the demands taking the fixed bus lines originally, develops a feeder bus network optimal model with the minimum cost of passengers, operators and social for many-to-many travel demand. Logit model is applied to redirect private car demand between private car and feeder bus line, fixed bus line demand between feeder bus and fixed bus line. A genetic algorithm is developed to solve the problem. The results show that the model constructed in this paper and the applied genetic algorithm can obtain optimal feeder bus lines, the first bus station and transfer subway station for originally private car demand. The solution result shows that the feeder bus line strategies have a close relationship with the percentage of the whole traveling chain costs.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2015年第5期128-135,156,共9页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然基金资助项目(U1361114) 国家自然基金青年基金项目(71401006) 北京交通大学基本科研业务项目(2015JBM059)
关键词 城市交通 接运公交 遗传算法 可变客流 固定公交 urban traffic feeder bus genetic algorithm variable demand fixed bus
  • 相关文献

参考文献9

  • 1Xiong J, Guan W, Song L Y, et al. Optimal routing design of a community shuttle for metro stations[J]. Journal of Transportation Engineering, 2013, 139(12): 1211-1223.
  • 2Chien S I, Spasovic L N, Elefsiniotis S S, et al. Evaluation of feeder bus systems with probabilistic timevarying demands and nonadditive time costs[J]. Transit: Bus Transit and Maintenance, Paratransit, and New Technology, 2001, (1760): 47-55.
  • 3Kuah G K, Perl J. Optimization of feeder bus routes and bus-stop spacing[J]. Journal of Transportation Engineering-Asce, 1988, 114(3): 341-354.
  • 4Martins C L, Pato M V. Search strategies for the feeder bus network design problem[J]. European journal of operational research, 1998, 106(2-3): 425-440.
  • 5Wirasinghe S C, Hurdle V F, Newell G F. Optimal parameters for a coordinated rail and bus transit system[J]. Transportation Science, 1977,11(4): 359-374.
  • 6Kuan S N, Ong H L, Ng K M. Solving the feeder bus network design problem by genetic algorithms and ant colony optimization[J]. Advances in Engineering Software, 2006, 37(6): 351-359.
  • 7Kuan S N, Ong H L, Ng K M. Applying metaheuristics to feeder bus network design problem[J]. Asia- Pacific Journal of Operational Research, 2004, 21(4): 543-560.
  • 8Shariat Mohaymany A, Gholami A. Multimodal feeder network design problem: ant colony optimization approach[J]. Journal of Transportation Engineering, 2010, 136(4): 323-331.
  • 9Tahoorinia M M, Mohaymany A S, Gholami A. Designing a multimodal feeder network by covering stops with different modes[J]. Canadian Journal of Civil Engineering, 2014, 41(1): 87-96(10).

同被引文献24

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部