期刊文献+

出行分布观测数据中的稀疏矩阵问题研究 被引量:2

The Sparse Matrix Problem in Trip Distribution Observational Data
下载PDF
导出
摘要 对出行分布观测数据中的稀疏矩阵问题进行分析,提出了部分矩阵估计、补零矩阵估计和增量矩阵估计3种不同方法来标定双约束重力模型的参数.通过定义估计的精确性和有效性两个不同的估计效果测度,将双约束重力模型等价为带有约束的数学规划,并采用解析方法比较3种不同标定方法的估计精度差异.在此基础上,通过数值方法模拟计算,并比较3种标定方法的估计有效性.通过研究可以发现,补零矩阵估计的参数精确性最好,而增量矩阵估计的有效性最好.研究成果能够作为实际城市交通规划中观测稀疏矩阵参数标定工作的理论依据. The problem of sparse matrix in the trip distribution observational data are analyzed, and three different methods are put forward to calibrate the parameters of the double restraint gravitational model, as Parted Matrix Estimation, Zero Replaced Matrix Estimation and Incremental Matrix Estimation. By defining the Estimate Accuracy Index and the Estimate Effectiveness Index to measure the effects of estimation, this paper through the double restraint gravitational model equivalent mathematical programming with constraints, and compares three different analytical method of the estimation precision of the calibration method. On the basis of analysis, it used the methods of numerical simulation calculation, and contrasted the three estimation methods in accuracy and effectiveness. The conclusion finds that the calibration parameters by the method of the Zero Replaced Matrix Estimation have the best results in accuracy, and the calibration parameters by the method of the Incremental Matrix Estimation have the best results in effectiveness. The research results can be used as a theoretical basis of parameters calibration of observation sparse matrix in urban traffic planning in practical.
作者 罗小强
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2015年第5期216-222,共7页 Journal of Transportation Systems Engineering and Information Technology
基金 中央高校基金(2013G1411077) 陕西省社科基金(2014D39)
关键词 城市交通 稀疏矩阵 参数标定 重力模型 误差估计 urban traffic sparse matrix parameter calibration gravity model error estimation
  • 相关文献

参考文献13

  • 1Williams I. A comparison of some calibration techniques for doubly constrained models with an exponential cost function[J]. Transportation Research, 1976, 10(2): 91- 104.
  • 2Hyman M. The calibration of trip distribution models[J]. Environment and Planning, 1969, 1(3): 105-112.
  • 3Lam W, Huang H J. Calibration of the combined trip distribution and assignment model for multiple user classes[J]. Transportation Research Part B: Methodological, 1992, 26(4): 289-305.
  • 4Celik H M. Sample size needed for calibrating trip distribution and behavior of the gravity model[J]. Journal of Transport Geography, 2010, 18(1): 183-190.
  • 5Foulds H, Nascimento D, Calixto I, et al. A fuzzy setbased approach to origin-destination matrix estimation in urban traffic networks with imprecise data[J]. European Journal of Operational Research, 2013, 231 (1): 190-201.
  • 6Guo A, Shen Q, Gizem S. Origin-destination missing data estimation for freight transportation planning: a gravity model-based regression approach[J]. General Information, 2014, 37 (6): 505-524.
  • 7Hensher D, Button K. Handbook of transport modelling[M]. Oxford, U.K.: Elsevier Science Ltd., 2000.
  • 8陈华友.基于预测有效度的非负变权组合预测模型研究[J].运筹与管理,2001,10(1):48-52. 被引量:13
  • 9陈华友,侯定丕.基于预测有效度的优性组合预测模型研究[J].中国科学技术大学学报,2002,32(2):172-180. 被引量:60
  • 10陈华友,侯定丕.基于标准差的预测有效度的组合预测模型[J].系统工程学报,2003,18(3):203-210. 被引量:39

二级参考文献20

共引文献111

同被引文献18

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部