期刊文献+

幂级数逐项求导或积分后收敛半径不变的新证法

A New Method to Prove the Power Series with Unchanged Radius of Convergence after Itemized Derivative or Quadrature
下载PDF
导出
摘要 要]运用数列极限的理论建立了关于数列上、下极限的相关命题,应用该命题和Cauchy-Hadamard定理的逆定理,给出了幂级数∞∑n=0anxn逐项求导、逐项积分后所得新的幂级数∞∑n=1nanxn-1和∞∑n=0ann+1xn+1收敛半径不变的性质的一个新的证明方法。该证明方法较传统的证明(基于Abel定理与正项级数的比较判别法)更为简洁。上述关于实幂级数结论的证明方法,可以推广到复幂级数上去。 In this paper,aproposition of superior and inferior limit is established with the theory of sequence limit.The proposition and Cauchy-Hadamard theorem are used a new method is provide to prove that the power series still have the same radius of convergence after itemized derivative or quadrature of method.And compared with the traditional method that is based on the theory of Abel and the comparison of positive series criterion,the new way is more simple.
出处 《长江大学学报(自科版)(上旬)》 CAS 2015年第10期5-7,3,共3页 JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
基金 国家自然科学基金项目(61503407) 长江大学教学研究项目(YZ2014007)
关键词 上极限 下极限 幂级数 收敛半径 superior limit inferior limit power series radius of convergence
  • 相关文献

参考文献2

  • 1菲赫金哥尔茨.微积分教程[M].北京大学高等数学教研室译.北京:人民教育出版社,1954.
  • 2陈纪修,於崇华,金路.数学分析(上册)[M].第2版,北京:高等教育出版社,2004:1-5.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部