期刊文献+

基于深度图像HOG特征的实时手势识别方法 被引量:6

Real-Time Gesture Recognition Method Based on Depth Image HOG Features
下载PDF
导出
摘要 手势识别是模式识别领域的一个热点研究方向。提出了一种利用Kinect传感器深度图像进行手势分割的方法,并研究了基于灰度图像HOG特征的手势识别模型;深入研究了HOG特征,分析其特征向量特点,探讨了不同特征维数对训练机的影响及处理效率;通过SVM机器学习方法实现手势的分类识别,经过对大量实验样本的优化训练,获得了最优SVM参数,并进行分析、对比识别率。本文方法维数少、识别率高、运行速度快、性能稳定,能满足实时性手势识别的要求。 Gesture recognition is a hot topic in the field of pattern recognition. By means of depth information of Kinect sensor, this paper proposes a gesture segmentation method and a gesture recognition model based on HOG features of grayscale image. Besides, this paper researches HOG features, analyzes the characteristics of the eigenvectors, and explores the influence of different feature dimensions on training machine and processing efficiency. Finally, SVM method is utilized to realize the classification of gesture recognition, in which the SVM parameters are optimized through a large number of experiment data and the rate of identification is compared and analyzed. It is shown that the proposed method has less dimension, high recognition rate, quick running, and stable performance such that it can meet the requirements of real-time gesture recognition.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期698-702,共5页 Journal of East China University of Science and Technology
基金 国家自然科学基金(61271349) 中央高校基本科研业务费专项资金(WH1214015)
关键词 KINECT 深度图像 HOG特征 SVM机器学习 手势识别 Kinect depth image HOG features SVM machine learning gesture recognition
  • 相关文献

参考文献9

  • 1包加桐,宋爱国,郭晏,唐鸿儒.基于SURF特征跟踪的动态手势识别算法[J].机器人,2011,33(4):482-489. 被引量:23
  • 2张良国,吴江琴,高文,姚鸿勋.基于Hausdorff距离的手势识别[J].中国图象图形学报(A辑),2002,7(11):1144-1150. 被引量:62
  • 3任彧,顾成成.基于HOG特征和SVM的手势识别[J].科技通报,2011,27(2):211-214. 被引量:49
  • 4Frati V, Prattichizzo D. Using Kinect for hand tracking and rendering in wearable haptics[C']// IEEE World Haptics Conference. Istanbul, Turkey: IEEE, 2011:317-321.
  • 5邓瑞,周玲玲,应忍冬.基于Kinect深度信息的手势提取与识别研究[J].计算机应用研究,2013,30(4):1263-1265. 被引量:44
  • 6Wang Hanlie, Fu Jingjing, Lu Yan, et al. Depth sensor as- sisted real-time gesture recognition for interactive presenta- tion[J]. Journal of Visual Communication and Image Repre- sentation, 2013,24(8) : 1458-1468.
  • 7Mastorakis G, Makris D. Fall detection system using Kinect's infrared sensor[J]. Journal of Real Time Image Processing, 2014, 9(4): 635-646.
  • 8Min R, Kose N, Dugelay J L. KinectFaceDB: A Kinect data- base for face recognition[J]. IEEE Transactions on Systems Man Cybernetics-Systems, 2014, 44(11) : 1534-1548.
  • 9Yue Haosong, Chen Weihai, Wu Xingming, et al. Fast 3D modeling in complex environments using a single Kinect sen- sor[J]. Optics and Lasers in Engineering, 2014, 53: 104- 111.

二级参考文献35

  • 1田巍,庄镇泉.基于HSV色彩空间的自适应肤色检测[J].计算机工程与应用,2004,40(14):81-85. 被引量:37
  • 2葛元,郭兴伟,王林泉.傅立叶描述子在手势识别中的应用[J].计算机应用与软件,2005,22(6):12-13. 被引量:16
  • 3何阳清,葛元,王林泉.应用几何矩和边缘检测的手势识别算法[J].计算机工程,2005,31(15):165-166. 被引量:9
  • 4刘寅,滕晓龙,刘重庆.复杂背景下基于傅立叶描述子的手势识别[J].计算机仿真,2005,22(12):158-161. 被引量:30
  • 5陈锻生,刘政凯.肤色检测技术综述[J].计算机学报,2006,29(2):194-207. 被引量:118
  • 6Dalai N,Triggs B.Histograms of Oriented Gradients for Human Detection[M].CVPR,2005.
  • 7Yun Liu,Zhijie Gan,Yu Sun.Static Hand Gesture Recognition and Its Application based on Support Vector Machines[C] //Ninth ACIS International Conference on Software Engineering,Artificial Intelligence,Networking,and Parallel/Distributed Computing,Phuket,Thailand,August 2008.IEEE,2008.
  • 8Malima A, Ozgur E, Cetin M. A fast algorithm for vision-based hand gesture recognition for robot control[C]//14th IEEE Sig- nal Processing and Communications Applications Conference. Piscataway, NJ, USA: IEEE, 2006: 1-4.
  • 9Sfmchez-Nielsen E, Ant6n-Canals L, Hemandez-Tejera M. Hand gesture recognition for human-machine interaction [J]. Journal of WSCG, 2004, 12(1): 91-96.
  • 10Wu Y, Liu Q, Huang T S. An adaptive self-organizing color seg- mentation algorithm with application to robust real-time human hand localization[C]//Proceedings of the 9th Asian Conference on Computer Vision. 2000:1106-1111.

共引文献166

同被引文献29

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部