摘要
采用基于混合物理论的多孔介质模型,建立饱和土介质一维动态响应问题的控制方程,在基本方程中考虑土体的非均匀性以及变形过程中的固体颗粒相和孔隙流体相体积分数的变化.选取固体骨架位移、孔隙流体位移以及孔隙流体压力作为状态变量,利用Laplace积分变换建立问题的状态方程.作为数值算例,考虑饱和土层的物理力学性质沿深度方向按指数函数连续变化,利用打靶法和数值Laplace逆变换获得在阶跃荷载作用下的位移和应力场物理量的瞬态响应,重点分析讨论材料非均匀性对饱和土介质动力特性的影响.结果表明,非均匀性对饱和土的瞬态响应有显著的影响;在小变形假设下组分相的体积分数变化很小.
A mixture theory-based model of porous medium is employed to set up governing equations for one-dimensional transient response of fluid-saturated soil,in which the non-homogeneity and the change of volume fractions of solid phase of particle and liquid phase in porous cavity are taken into account.The solid skeleton displacement,fluid-in-pore displacement,and fluid pressure are taken as state variables,and by using Laplace integral transformation,the state equation is established.In a numerical example,the physico-mechanical properties of the saturated soil are assumed to have exponential distribution across soil thickness,the transient response of displacement and stress to a set-load are obtained by using shooting method and numerical inverse Laplace transform.The effect of material non-homogeneity on transient characteristics of saturated soil medium is emphatically analyzed and discussed.The numerical result shows that non-homogeneity can bring a significant effect on transient response of saturated soil.In addition,under the assumption of small deformation,the variation of volume fraction of component is very small.
出处
《兰州理工大学学报》
CAS
北大核心
2015年第5期110-114,共5页
Journal of Lanzhou University of Technology
基金
国家自然科学基金(11162008
51368038)
甘肃省高等学校基本科研业务费专项(1104ZTC140)
甘肃省环保厅科研项目(GSEP-2014-23)
关键词
饱和土
非均匀性
混合物理论
打靶法
saturated soil
non-homogeneity
mixture theory
shooting method