期刊文献+

非线性系统随机振动响应限界极大极小控制 被引量:2

Optimal Bounded Control of Large Random Vibration Responses in Nonlinear Systems
下载PDF
导出
摘要 研究非线性系统随机振动的限界极大极小最优控制。引入调控变量放大振动峰响应,用高阶多项式作为性能指标函数,提高其中峰值占比,建立非线性随机振动峰响应的极小化最优控制问题方程;应用随机动态规划原理建立HJB方程,考虑控制作用的有界性,确定半连续与跳变型极大极小最优控制律;最后通过数值结果,说明该最优控制能够有效地抑制非线性随机振动,并调控变量、控制界限、跳变型控制等对于控制效果的影响。 The optimal bounded minimum-maximum control for random vibration of nonlinear systems was studied. A variable was employed for rescaling system responses and a high-order power polynomial was used as the cost function of performance index for magnifying large vibration responses. The optimal bounded minimum-maximum control problem for nonlinear random vibration was expressed by a transformed differential equation and a performance index of the system. Then, the HJB equation was derived based on the random dynamical programming principle. The optimal bounded semi-continuous and switching control laws were obtained by solving the equation with the consideration of the control bound. The control effects for different variable values, control bounds, semi-continuous control and switching control were compared one-another. Numerical results show that the proposed control can effectively suppress the nonlinear random vibration.
出处 《噪声与振动控制》 CSCD 2015年第5期53-55,59,共4页 Noise and Vibration Control
基金 国家自然科学基金项目(11432012) 浙江省自然科学基金项目(LY15A020001)
关键词 振动与波 最优控制 控制饱和 非线性随机振动 峰响应降低 vibration and wave optimal control control saturation nonlinear random vibration peak response reduction
  • 相关文献

参考文献11

  • 1Housner G W, Bergman L A, Caughey T K, et al.Structural control: past, present, and future[J]. ASCEJournal of Engineering Mechanics, 1997, 123: 897-971.
  • 2Spencer B F, Nagarajaiah S. State of the art of structuralcontrol[J]. ASCE Journal of Structural Engineering,2003, 129: 845-856.
  • 3Soong T T, Cimellaro G P. Future directions in structuralcontrol[J]. Structural Control Health Monitoring, 2009,16: 7-16.
  • 4Wu Z, Lin R C, Soong T T. Non-linear feedback controlfor improved peak response reduction[J]. SmartMaterials and Structures, 1995, 4: A140-147.
  • 5Ying Z G, Ni Y Q. Optimal control for vibration peakreduction via minimizing large responses[J]. StructuralControl Health Monitoring, 2015, 22: 826-846.
  • 6Maurer H, Osmolovskii N P. Second order optimalityconditions for bang- bang control problems[J]. Controland Cybernetics, 2003, 32: 555-584.
  • 7Dimentberg M F, Iourtchenko D V, Bratus A S. Optimalbounded control of steady- state random vibrations[J],Probabilistic Engineering Mechanics, 2000, 15: 381-386.
  • 8Potter J N, Neild S A, Wagg D J. Generalisation andoptimization of semi- active, on- off switching controllersfor single degree- of- freedom systems[J], Journal ofSound and Vibration, 2010, 329: 2450-2462.
  • 9Ying Z G, Ni Y Q, Duan Y F. Parametric optimal boundedfeedback control for smart parameter- controllablecomposite structures[J]. Journal of Sound andVibration, 2015, 339: 38-55.
  • 10张巍,应祖光,胡荣春.拉索非线性随机振动的最优有界半连续控制[J].噪声与振动控制,2014,34(2):133-135. 被引量:3

二级参考文献9

  • 1Irvine H M. Cable Structures[M]. Cambridge: MIT Press,1981.
  • 2Diouron T L, Fujino Y, Abe M. Control of wind- inducedself- excited oscillations by transfer of internal energy tohigher modes of vibration I: analysis in two degree offreedom[J]. ASCE J. Eng. Mech., 2003, 129: 514-525.
  • 3Zhou H J, Xu Y L. Wind- rain- induced vibration andcontrol of stay cables in a cable- stayed bridge [J]. Struct.Cont. Health Moni., 2007, 14: 1013-1033.
  • 4Ying Z G, Ni Y Q, Ko J M. Parametrically excitedinstability analysis of a semi- actively controlled cable[J].Eng. Struct., 2007, 29: 567-575.
  • 5Zhao M, Zhu W Q. Stochastic optimal semi-active controlof stay cables by using magneto-rheological damper[J]. J.Vib. Cont., 2011, 17: 1921-1929.
  • 6Spencer B F, Dyke S J, et al. Phenomenological model formagneto- rheological dampers[J]. ASCE J. Eng. Mech.,1997, 123: 230-238.
  • 7Ying Z G, Ni Y Q, Ko J M. A bounded stochastic optimalsemi-active control [J]. J. Sound Vib., 2007, 304: 948-956.
  • 8Chitour Y, Liu W, Sontag E. On the continuity andincremental- gain properties of certain saturated linearfeedback loops[J]. Int. J. Robust Nonlin. Cont., 1995, 5:413-440.
  • 9张巍,应祖光,王建文.风激拉索张弛振荡的最优控制分析[J].噪声与振动控制,2012,32(3):21-24. 被引量:2

共引文献2

同被引文献1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部