期刊文献+

基于三次Hermite插值的局部特征尺度分解方法 被引量:1

Local Characteristic-scale Decomposition Method Based on Cubic Hermite Interpolation
下载PDF
导出
摘要 内禀时间尺度分解(Intrinsic time-scale decomposition,简称ITD)方法采用线性变换获得基线信号,使得分解结果出现毛刺和瞬时频率失真现象。因此,在定义瞬时频率具有物理意义的内禀尺度分量(Intrinsic scale component,简称ISC)基础上,提出基于三次Hermite插值的局部特征尺度分解方法(Cubic Hermite interpolation-Local characteristicscale decomposition,简称CHLCD),该方法能够自适应地将一个复杂信号分解为若干个瞬时频率具有物理意义的内禀尺度分量之和。首先对CHLCD方法的原理进行分析,然后给出采用CHLCD对信号进行分解的详细步骤,最后采用仿真信号和滚动轴承信号对CHLCD进行验证,结果表明了CHLCD方法的有效性。 Since linear transformation is used to obtain baseline signal in intrinsic time scale decomposition (ITD) method, burr and instantaneous frequency distortion will appear in the decomposition results. Therefore, a rational Cubic Hermite interpolation-Local characteristic-scale decomposition (CHLCD) method is presented. In this method, any complex signal can be adaptively decomposed into a sum of several independent rational intrinsic scale components (ISCs), whose instantaneous frequencies have obvious physical meanings. Firstly, the principle of the CHLCD method was analyzed. Then, the detailed steps of CHLCD of signal were given. Finally, a simulation signal was adopted to verify the CHLCD method. Experimental results show that the CHLCD method can effectively decompose signals.
作者 李军 潘孟春
出处 《噪声与振动控制》 CSCD 2015年第5期159-163,175,共6页 Noise and Vibration Control
关键词 振动与波 局部特征尺度分解 三次Hermite插值 信号处理 故障诊断 vibration and wave local characteristic-scale decomposition cubic Hermite interpolation signal processing fault diagnosis
  • 相关文献

参考文献9

二级参考文献76

  • 1唐德东,周鹏.磁记忆技术在管件裂纹检测中的应用[J].仪器仪表学报,2004,25(z3):255-256. 被引量:7
  • 2程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 3裴峻峰,张嗣伟,齐明侠.共振解调和模糊识别技术在钻井泵轴承故障诊断中的应用[J].石油学报,2005,26(4):119-122. 被引量:7
  • 4梁霖,徐光华.基于自适应复平移Morlet小波的轴承包络解调分析方法[J].机械工程学报,2006,42(10):151-155. 被引量:20
  • 5贝兹JA 张志明等译.信号处理、调制与噪声[M].北京:人民邮电出版社,1985..
  • 6Zhao Yunxin, Les E At- las, Robert J Marks. The use of cone-shaped kernels for generalized timefrequency representation of nonstationary signals [J]. IEEE Trans. On ASSP, 1990, 38 (7): 1084 - 1091.
  • 7Huang N E, Shen Z, Long S R, et al. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non- stationary time series analysis [J]. Proe. R. Soe. Lond. A, 1998, 454 : 903 - 994.
  • 8Huang N E, Shen Z, Long S R. A New View of Nonlinear Water Waves: The Hilbert Spectrum [ J]. Annu. Rev. Fluid Mech., 1999, 31:417-455.
  • 9Loh C H, Wu T C, Huaug N E. Application of the empirical mode decomposition - Hilbert spectrum method to identify near-fault ground-motion characteristics and structural response [ J]. Bulletin of the Seismological Society of American, 2001, 91(5): 1339-1352.
  • 10Marcus D, Torsten S. Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves [ J ]. Ocean Engineering, 2004, 31 ( 14 - 15) : 1783 - 1834.

共引文献350

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部