期刊文献+

特征加权优化软子空间聚类算法 被引量:2

A feature weighting optimized soft subspace clustering algorithm
下载PDF
导出
摘要 在聚类过程中结合簇内紧凑度信息和特征权值分布信息,对数据集的划分和各个簇类所在的子空间两方面进行优化。实验结果表明,该算法相比已有的软子空间聚类算法具有更好的聚类效果。 The within-class compactness data is combined with the feature weighting distribution data in the clustering process,and then both the data partition and each cluster are optimized in corresponding subspaces.Experimental studies demonstrate that the algorithm shows better features than the other soft subspace clustering algorithms.
作者 庄景晖
出处 《长春工业大学学报》 CAS 2015年第4期414-420,共7页 Journal of Changchun University of Technology
基金 福建省教育厅科技项目(JB12329)
关键词 聚类 高维数据 软子空间 特征加权 clustering high-dimensional data soft subspace feature weighting.
  • 相关文献

参考文献14

  • 1Moreno-Hagelsieb G, Wang Z, Walsh S, et al. Phylogenomic clustering for selecting non-redun- dant genomes for comparative genomics[J]. Bioin- formatics, 2013,29 (7) : 947-949.
  • 2Jing L, Ng M K, Huang J Z. An entropy weighting k-means algorithm for subspace clustering of high- dimensinoal sparese data[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19 (8) : 1- 16.
  • 3Tang L, Liu H, Zhang J. Identifying evolving groups in dynamic multimode networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2012,24(1) .. 72-85.
  • 4Huang J Z, Ng M K, Rong H, et al. Automated variable weighting in k-means type clustering[J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2005,27 (5) : 657-668.
  • 5Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data .. a review [ J ]. ACM SIGKDD Explorations Newsletter, 2004,6 (1) : 90- 105.
  • 6Aggarwal C C, Wolf J L, Yu P S, et al. Fast algo-rithm for projected clustering [C]//Proceeding of ACM SIGMOD. 1999 : 61-72.
  • 7陈黎飞,郭躬德,姜青山.自适应的软子空间聚类算法[J].软件学报,2010,21(10):2513-2523. 被引量:33
  • 8毕志升,王甲海,印鉴.基于差分演化算法的软子空间聚类[J].计算机学报,2012,35(10):2116-2128. 被引量:18
  • 9Jing L, Ng M K, Xu J, et al. On the performance of feature weighting k-means for text subspace clus- tering[C]//Proceeding of WAIM. 2005 : 502-512.
  • 10Gar G, Wu J, Yang Z. Fuzzy suhspace algorithm for clustering high dimensional data[C]//Proeeed- ing of ADMA. 2006:271-278.

二级参考文献25

  • 1Kriegel H-P, Kroger P, Zimek A. Clustering high dimen sional data: A survey on subspace clustering, pattern based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery from Data, 2009, 3(1): 1-58.
  • 2Moise G, Zimek A, Kroger P, Kriegel H-P, Sander J. Sub- space and projected clustering: Experimental evaluation and analysis. Knowledge and Information Systems, 2009, 21(3) : 299-326.
  • 3Huang J Z, Ng M K, Rong H, Li Z. Automated variable weighting in k-means type clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (5):657-668.
  • 4Jing L, Ng M K, Huang J Z. An entropy weighting k means algorithm for subspace clustering of high-dimensional sparse data. IEEE Transactions on Knowledge and Data Engineer- ing, 2007, 19(8): 1026-1041.
  • 5Deng Z, Choi K-S, Chung F-L, Wang S. Enhanced soft sub- space clustering integrating within-cluster and between clus- ter information. Pattern Recognition, 2010, 43(3): 767-781.
  • 6Boongoen T, Shang C, Iam-On N, Shen Q. Extending data reliability measure to a filter approach for soft subspace clustering. IEEE Transactions on Systems, Man, and Cyber- netics, Part B: Cybernetics, 2011, 41(6): 1705-1714.
  • 7Gan G, Wu J, Yang Z. A fuzzy subspace algorithm for clus- tering high dimensional data//Li Xue, Osmar Zaiane, Li Z-H eds. Advanced Data Mining and Applications, Series Lecture Notes in Computer Science. Germany: Springer Berlin/Heidelberg, 2006, 4093 : 271-278.
  • 8Friedman J H, Meuiman J J. Clustering objects on subsets of attributes. Journal of the Royal Statistieal Society, 2004, 66:815-849.
  • 9Jing L, Ng M, Xu J, Huang J. Subspace clustering of text documents with feature weighting k means algorithm// Ho T, Cheung D, Liu H. Advances in Knowledge Discovery and Data Mining, Series. Lecture Notes in Computer Science. Germany: Springer Berlin/Heidelberg, 2005, 3518:802-812.
  • 10MacQueen J B. Some methods for classification and analysis of multivariate observations//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, USA, 1967:281-297.

共引文献44

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部