期刊文献+

On Fatou Type Convergence of Convolution Type Double Singular Integral Operators

On Fatou Type Convergence of Convolution Type Double Singular Integral Operators
下载PDF
导出
摘要 In this paper, some approximation formulae for a class of convolution type double singular integral operators depending on three parameters of the type(T_λf)(x, y) = ∫_a^b ∫_a^b f(t, s)K_λ(t-x,s-y)dsdt, x,y ∈(a,b), λ ∈ Λ [0,∞),(0.1)are given. Here f belongs to the function space L_1( <a,b >~2), where <a,b> is an arbitrary interval in R. In this paper three theorems are proved, one for existence of the operator(T_λf)(x, y) and the others for its Fatou-type pointwise convergence to f(x_0, y_0), as(x,y,λ) tends to(x_0, y_0, λ_0). In contrast to previous works, the kernel functions K_λ(u,v)don't have to be 2π-periodic, positive, even and radial. Our results improve and extend some of the previous results of [1, 6, 8, 10, 11, 13] in three dimensional frame and especially the very recent paper [15]. In this paper, some approximation formulae for a class of convolution type double singular integral operators depending on three parameters of the type(T_λf)(x, y) = ∫_a^b ∫_a^b f(t, s)K_λ(t-x,s-y)dsdt, x,y ∈(a,b), λ ∈ Λ [0,∞),(0.1)are given. Here f belongs to the function space L_1( <a,b >~2), where <a,b> is an arbitrary interval in R. In this paper three theorems are proved, one for existence of the operator(T_λf)(x, y) and the others for its Fatou-type pointwise convergence to f(x_0, y_0), as(x,y,λ) tends to(x_0, y_0, λ_0). In contrast to previous works, the kernel functions K_λ(u,v)don't have to be 2π-periodic, positive, even and radial. Our results improve and extend some of the previous results of [1, 6, 8, 10, 11, 13] in three dimensional frame and especially the very recent paper [15].
作者 Harun Karsli
出处 《Analysis in Theory and Applications》 CSCD 2015年第3期307-320,共14页 分析理论与应用(英文刊)
关键词 Fatou-type convergence convolution type double singular integral operators μgeneralized Lebesgue point Fatou-type convergence,convolution type double singular integral operators,μgeneralized Lebesgue point
  • 相关文献

参考文献15

  • 1C. Bardaro and C. Gori Cocchieri, Sul grado di approssimazione per una classe di integralisingolari, Rend. Mat. Appl., 4 (1984), 481–490.
  • 2C. Bardaro, H. Karsli and G. Vinti, On pointwise convergence of linear integral operatorswith homogeneous kernels, Integral Transforms and Special Functions, 19(6) (2008), 429-439.
  • 3C. Bardaro, H. Karsli and G. Vinti, Nonlinear integral operators with homogeneous kernels:pointwise approximation theorems, Applicable Analysis, 90(3-4) (2011), 463–474.
  • 4C. Bardaro, H. Karsli and G. Vinti, On pointwise convergence of Mellin type nonlinear msingularintegral operators, Commun. Appl. Nonlinear Anal., 20(2) (2013), 25–39.
  • 5P. L. Butzer and R. J.Nessel, Fourier Analysis and Approximation, V.I, Academic Press,NewYork, London, 1971.
  • 6A. D. Gadjiev, On the order of convergence of singular integrals depending on two parameters,Special Questions of Functional Analysis and Its Applications to the Theory of DifferentialEquations and Functions Theory, Baku, 1968, 40–44.
  • 7H. Karsli, Convergence and rate of convergence by nonlinear singular integral operatorsdepending on two parameters, Appl. Anal., 85 (6,7) (2006), 781–791.
  • 8H. Karsli and E. Ibikli, On convergence of convolution type singular integral operators dependingon two parameters, Fasciculi Math., 38 (2007), 25–39.
  • 9H. Karsli, On approximation properties of a class of convolution type nonlinear singularintegral operators, Georgian Math. J., 15(1) (2008), 77–86.
  • 10B. Rydzewska, Approximation of functions by ordinary singular integrals, Fasciculi Math.,7 (1973), 71–81.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部