期刊文献+

基于EEF准则的认知无线电合作频谱感知

Cooperative spectrum sensing for cognitive radio based on exponentially embedded family criterion
原文传递
导出
摘要 频谱感知是认知无线电的一个重要组成部分。提出了一种基于指数嵌入族(exponentially embedded family,EEF)准则的合作频谱感知算法。与传统方式下所有合作用户皆参加检测的方法不同,提出的算法依靠用户选择机制,并且不需要知晓授权用户信号的任何先验信息。该算法先对参与合作频谱感知的认知用户进行筛选,然后在筛选出的最优用户频谱观测数据的基础上生成全局检测统计量(global decision statistic,GTS),最后对授权用户是否存在做出全局判决。仿真表明,在虚警概率保持不变的情况下,进行最优用户选择(optimal user selection,OUS)的合作频谱感知算法的检测概率优于未进行最优用户选择的算法。 Spectrum Sensing is a fundamental component in cognitive radio. We propose a cooperative spectrum sensing algorithm via exponentially embedded family criterion. Compared with the traditional spectrum sensing algorithms,the proposed algorithm depends on user selection mechanism and does not require all the cognitive users to participate in data fusion. In addition,it does not need a priori knowledge of the primary user signal. The proposed algorithm selects the optimal users firstly,and then based on the spectrum observations of the selected users,the fusion center generates the global decision statistic( GTS) to determine whether the PU signal exists or not. The simulations demonstrate that under the criterion of constant false alarm probability,the proposed optimal user selection( OUS) algorithm yields improved detection probability compared to those without OUS.
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2015年第5期577-582,588,共7页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金(61201205) 重庆市自然科学基金(cstc2012jj A40043) 重庆邮电大学博士启动基金(A2012-06)~~
关键词 认知无线电(CR) 合作频谱感知 指数嵌入族(EEF)准则 最优用户选择 cognitive radio(CR) cooperative spectrum sensing exponentially embedded family(EEF) criterion optimal user selection
  • 相关文献

参考文献18

  • 1MITOLA J, MAGUIRE G. Cognitive radio : making software software radios more Personal[J]. IEEE Pers Commun, 1999, 6(4): 13-18.
  • 2JOSEPH M. Cognitive Radio for Flexible Mobile Multimedia Communications[J]. Mobile Networks and Applications, 2001, 6(5): 435-441.
  • 3SHEN Bin, KWAK K S. Soft Combination Schemes for Cooperative Spectrum Sensing in Cognitive Radio Networks[J]. ETRI Journal, 2009, 31(3): 263-270.
  • 4URKOWITZ H. Energy detection of unknown deterministic signals[J]. Proceedings of the IEEE, 1967, 55(4): 523-531.
  • 5SHEN J, LIU S. ZENG L. et al. Optimisation of cooperative spectrum sensing in cognitive radio network[J]. Communications , IET, 2009 , 3(7) : 1170-1178.
  • 6ZENG Yonghong, LIANG Yingchang. Eigen- value-based Spectrum Sensing Algorithms for Cognitive Radio[J]. Communications, IEEE Transactions on2009, 57(6)1784-1793.
  • 7ZHANG Rui, LIM Tengjong, LIANG Yingchang, et al. Multi-antenna based spectrum sensing for cognitive radios: A GLRT approach[J]. Commu-nications, IEEE Transactions on, 2010, 58(1): 84-88.
  • 8ZENG Yonghong, LIANG Yingchang, ZHANG Rui. Blindly combined energy detection for spectrum sensing in cognitive radio[J]. Signal Processing Letters, IEEE, 2008, 15: 649-652.
  • 9曹开田,杨震.一种新型的基于最大特征值的合作频谱感知算法[J].电子与信息学报,2011,33(6):1367-1372. 被引量:9
  • 10樊陆陆,申滨,黄琼.基于迭代用户选择的合作频谱感知算法[J].重庆邮电大学学报(自然科学版),2014,26(1):18-24. 被引量:2

二级参考文献24

  • 1Akyildiz I F, Lee Won-yeol, and Vuran M C, et al.. Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey [J]. Computer Networks, 2006, 50(13): 2127-2159.
  • 2Cardoso L S, Debbah M, and Bianchi P, et al.. Cooperative spectrum sensing using random matrix theory [C]. International Symposium on Wireless Pervasive Computing, Santorini, May 7-9, 2008: 334-338.
  • 3Wang Lei, Zheng Bao-yu, and Cui Jing-wu, et al.. Cooperative spectrum sensing using free probability theory[C]. IEEE Global Telecommunications Conference, Honolulu. Nov.30-Dec.4. 2009: 1-5.
  • 4Zeng Yong-hong and Liang Ying-chang. Eigenvalue-based spectrum sensing algorithms for cognitive radio [J]. IEEE Transactions on Communications, 2009, 57(6): 1784-1793.
  • 5Penna F, Garello R, and Spirito M A. Probability of missed detection in eigenvalue ratio spectrum sensing[C]. IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, Marrakech, Oct. 12-14, 2009: 117-122.
  • 6Penna F, Garello R, and Spirito M A. Cooperative spectrum sensing based on the limiting eigenvalue ratio distribution in Wishart matrices [J]. IEEE Communications Letters, 2009, 13(7): 507-509.
  • 7Zeng Yong-hong, Koh Choo-leng, and Liang Ying-chang Maximum eigenvalue detection: theory and application [C] IEEE International Conference on Communications, Beijing May 19-23, 2008: 4160-4164.
  • 8Baik J, Arous G B, and Peche S. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices [J]. The Annals of Probability, 2005, 33(5): 1643-1697.
  • 9Balk J and Silversteia J W. Eigenvalues of large sample covariance matrices of spiked population models IJ]. Journal of Multivariate Analysis, 2006, 97(6): 1382-1408.
  • 10Hoyhtya M, Hekkala A, Katz M D. Cognitive wireless networks[M]. Chapter 18, Spectrum Awareness: Techniques and Challenges for Active Spectrum Sensing. Springer Netherlands, 2007.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部