期刊文献+

基于局部自相似性的视频图像超分辨率算法 被引量:6

Local self-examples based video images super-resolution algorithm
原文传递
导出
摘要 针对视频图像的特点,提出基于局部自相似性的视频图像超分辨率算法。该算法不依赖自然图像数据库作为样本块的图像来源,而是利用局部自相似性,通过在相关坐标邻域中搜索子图像块以实现高频补偿。设计上采样和下采样滤波器,以实现对高频补偿后的图像进行滤波从而产生最终的样本块,采用逐级放大、分多步组合达到视频图像的放大,从而实现了视频图像超分辨率算法。实验结果表明,对于视频序列图像,在主观视觉效果和均方根误差(root mean square error,RMSE)、结构自相似性算子(structural similarity index measurement,SSIM)等方面,算法能显著地提高其分辨率,取得很好的效果。同时,对视频图像利用局部自相似性方法,减少了图像块的检索时间,降低了算法运算量。 According to the features of video images,local self-similarity based video images super resolution algorithm is proposed in the paper. The algorithms do not rely on the external example database,but take the character of local self-similarity to accomplish the high-frequency compensation by searching the example patches in the relative coordinate neighborhood. The up-sample and down-sample filters are designed to filter the compensated images to produce the final example patches,and the progressive magnification is taken to enlarge the video images step by step. Experiments show the algorithm can efficiently improve the resolution of the video images no matter in visual effects or in the quality measures,such as RMSE,SSIM. Meanwhile,the approach of the self-similarity on the video images has reduced the searching time on the image blocks and decreased the algorithm computation.
机构地区 重庆通信学院
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2015年第5期692-699,共8页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金(61272043) 应急通信重庆市重点实验室开放课题(CQKLEC 20120504) 重庆通信学院理论研究项目(TZ-CQTY-Y-C-2014-022)~~
关键词 视频图像 局部自相似度 超分辨率算法 video images local self-examples super-reconstruction algorithm
  • 相关文献

参考文献11

  • 1THéVENAZ P, BLU T, UNSER M. Image interpolation and resampling, Hand book of Medical Imaging, Processing and Analysis[M]. San Diego CA, USA: Academic Press, 2000, 393-420.
  • 2WIUIAM T F, THOUIS R J, EGDN C P. Example-based super resolution[J]. IEEE Computer Graphics and Applications, 2002(22): 56-65.
  • 3WIUIAM T F, EGON C P, OWEN T C. Learning low-level vision[J]. International journal of computer vision, 2000, 40(1): 25-47.
  • 4浦剑,张军平.基于词典学习和稀疏表示的超分辨率方法[J].模式识别与人工智能,2010,23(3):335-340. 被引量:43
  • 5陈晓璇,齐春.基于低秩矩阵恢复和联合学习的图像超分辨率重建[J].计算机学报,2014,37(6):1372-1379. 被引量:15
  • 6ALY H A, DUBOIS E. Image up-sampling using total-variation regularization with a new observation model[J]. IEEE Transactions on Image Processing, 2005, 14(10): 1647-1659.
  • 7SHAN Q, LI Z, JIA J, et al. Fast image/video upsampling[J]. ACM Transactions on Graphics (TOG), ACM, 2008, 27(5): 153-159.
  • 8EBRAHIMI M, VRSCAYE R. Solving the inverse problem of image zooming using “self-examples”, Image analysis and Recognition. [M]//Lecture Notes in Computer Scienc. [s. l.]: Springer Berlin Heidelberg, 2007: 117-130.
  • 9SUETAKE N, SAKANO M, UCHINO E. Image super-resolution based on local self-similarity[J]. Optical Review, 2008, 15(1): 26-30.
  • 10FREEDMAN G, FATTALR. Image and video up-scaling from local self-examples[J]. ACM Transactions on Graphics, 2010, 28(3): 1-10.

二级参考文献38

  • 1Tipping M E,Bishop C M.Bayesian Image Super-Resolution//Becker S,Thrun S,Obermayer K,eds.Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,2003,XVI:1279-1286.
  • 2Capel D P.Image Mosaicing and Super-Resolution.Cambridge,UK:University of Oxford,2001.
  • 3Farsiu S,Robinson M D,Elad M,et al.Fast and Robust Multiframe Super-Resolution.IEEE Trans on Image Processing,2004,13(10):1327-1344.
  • 4Freeman W T,Pasztor E C,Carmichael O T.Learning Low-Level Vision.International Journal of Computer Vision,2000,40 (1):25 -47.
  • 5Freeman W T,Jones T R,Pasztor E C.Example-Based Super-Resolution.IEEE Computer Graphics and Applications,2002,22 (2):56-65.
  • 6Liu Ce,Shum H Y,Zhang Changshui.Two-Step Approach to Hallucinating Faces:Global Parametric Model and Local Nonparametric Model// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Hawaii,USA,2001,Ⅰ:192-198.
  • 7Chang Hong,Yeung D Y,Xiong Yimin.Super-Resolution through Neighbor Embedding//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington,USA,2004,Ⅰ:275-282.
  • 8Fan Wei,Yeung D Y.Image Hallucination Using Neighbor Embedding over Visual Primitive Manifolds//Proc of the IEEE ComputerSociety Conference on Computer Vision and Pattern Recognition.Minneapolis,USA,2007:18-23.
  • 9Chan T M,Zhang Junping,Pu Jian,et al.Neighbor Embedding Based Super-Resolution Algorithm through Edge Detection and Feature Selection.Pattern Recognition Letters,2009,30(5):494 -502.
  • 10Yang Jianchao,Wright J,Huang T,et al.Image Super-Resolution as Sparse Representation of Raw Image Patches//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Anchorage,USA,2008:1-8.

共引文献55

同被引文献55

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部