期刊文献+

基于MPA与静态预估的最坏执行时间分析方法

Worst-case Execution Time Analysis Method Based on MPA and Static Prediction
下载PDF
导出
摘要 针对现有嵌入式系统最坏执行时间(WCET)的静态分析方法效率低下问题,利用最小传播算法对程序流进行分析,获得程序中每一个基本块的最小树约束,通过象征性循环上界约束对所求函数中的内部循环变量进行再次约束,并结合最小树约束获得程序的WCET表达式。使用静态预估分析方法对每一个基本块的底层指令周期进行绝对估值,将底层指令周期代入WCET表达式计算出程序最终的WCET值。实验结果表明,与基于程序控制流程图的程序执行时间静态分析方法相比,该方法在保证程序分析精度的同时,大幅提高了分析效率。 Aiming at the problem of low efficiency for embedded system Worst-case Execution Time(WCET)static analysis methods,this paper uses Minimum Propagation Algorithm(MPA)to analyze the program flow and obtain the min-tree of each code block.Then it gets more strict constraints through the analysis of inner loop variables of function by symbolic loop bounds computation,and gets a WCET expression through constraints of min-tree and the loop bounds.Finally,it uses static prediction method to solve the WCET by absolute valuation of underlying instruction cycle of each basic block,and calculates the final WCET value.Experimental results show that this method increases the analysis efficiency as well as ensures accuracy compared with program execution time static analysis method based on process control flow diagram.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第10期76-82,共7页 Computer Engineering
基金 广东省产学研合作重大专项基金资助项目(2012-391)
关键词 嵌入式软件 实时性 最坏执行时间 最小传播算法 静态预估分析 embedded software real-time Worst-case Execution Time(WCET) Minimum Propagation Algorithm(MPA) static prediction analysis
  • 相关文献

参考文献20

  • 1Cousot P,Cousot R C P,Cousot R.Abstract Interpretation:A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints[C]//Proceedings of the 4th ACM Symposium on Principles of Programming Languages.New York,USA:ACM Press,1977:238-252.
  • 2MinéA.The Octagon Abstract Domain[J].Higher Order Symbolically Computing,2006,19(1):31-67.
  • 3Cousot P,Halbwachs N.Automatic Discovery of Linear Roximation of Fixpoints[C]//Proceedings of the 5th ACM Symposium on Principles of Programming Languages.New York,USA:ACM Press,1978:84-97.
  • 4Philippe G.Static Analysis of Arithmetical Congruences[J].International Journal of Computer Mathematics,1989,30(3/4):165-199.
  • 5Lisper B.Fully Automatic Parametric Worst-case Execution Time Analysis[C]//Proceedings of the 3rd International Workshop on Worst-case Execution Time Analysis.Washington D.C.,USA:IEEE Press,2003:77-80.
  • 6Bygde S.Static WCET Analysis Based on Abstract Interpretation and Counting of Elements[EB/OL].(2010-03-15).http://www.mrtc.mdh.se/index.php?choice=publications&id=2144.
  • 7Feautrier P.Parametric Integer Programming[J].Operations Research,1988,22(3):243-268.
  • 8Piplib Website[EB/OL].(2009-11-07).http://www.piplib.org/.
  • 9Stefan B,Andreas E,Bjrn L.An Efficient Algorithm for Parametric WCET Calculation[J].Journal of Systems Architecture,2011,57(6):614-624.
  • 10Li Y T S,Malik S,Wolfe A.Performance Estimation of Embedded Software with Instruction Cache Modeling[J].ACM Transactions on Design Automation of Electronic Systems,1999,4(3):257-279.

二级参考文献2

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部