期刊文献+

基于Student-t分布的混合模型图像分割方法 被引量:1

Mixture Model Image Segmentation Method Based on Student-t Distribution
下载PDF
导出
摘要 传统图像分割方法在分割被重尾噪声污染的图像时的分割效果不理想。针对该问题,提出一种基于Student-t分布的图像分割方法。该方法根据像素间的空间关系,计算出其先验概率,使用梯度下降法优化参数,从而最小化误差函数,在参数优化后得到像素点的后验概率值,对像素进行标记以实现图像分割。实验结果表明,在处理被重尾噪声腐蚀的图像时,与传统的K-均值、模糊C-均值等图像分割方法相比,该方法的误分率较低,分割效果较好。 Traditional image segmentation methods can not effectively adapt to the case of image smearing with heavy-tailed noise.And the result of segmentation is not satisfactory in dealing with the image contaminated by heavy-tailed noise.This paper presents an image segmentation method based on Student-t distribution.The method calculates the prior probability according to the spatial relationship between the pixels,uses gradient descent method to optimize parameters so as to minimize the error function.The posterior probability values of pixels are obtained based on the optimal parameters.Image segmentation is realized by marking the pixels.Experimental results show that the misclassification ratio is lower and the performance is better when using the proposed method to deal with the image contaminated by heavy-tailed noise,compared with the traditional K-means and Fuzzy Cmeans(FCM),etc.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第10期204-209,共6页 Computer Engineering
关键词 Student-t分布 重尾噪声 图像分割 空间邻域关系 高斯混合模型 Student-t distribution heavy-tailed noise image segmentation spatial neighborhood relationship Gaussian Mixture Model(GMM)
  • 相关文献

参考文献13

  • 1Mclachan G,Peel D.Finite Mixture Model[M].New York,USA:John Wiley&Sons,2000.
  • 2Bishop C M.Pattern Recognition and Machine Learning[M].Berlin,Germany:Springer,2006.
  • 3Titterington D M,Smith A F,Makov U E.Statistical Analysis of Finite Mixture Distributions[M].New York,USA:John Wiley&Sons,1985.
  • 4Jain A K,Duin R P W.Statistical Pattern Recognition:A Review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(1):4-37.
  • 5Redner R A,Walker H F.Mixture Densities,Maximum Likelihood and the EM Algorithm[J].SIAM Review,1984,26(2):195-239.
  • 6Choi H S,Haynor D R,Kim Y.Partial Volume Tissue Classification of Multichannel Magnetic Resonance Images——A Mixel Model[J].IEEE Transactions on Medical Imaging,1991,10(3):395-407.
  • 7Santago P,Gage H D.Quantification of MR Brain Images by Mixture Density and Partial Volume Modeling[J].IEEE Transactions on Medical Imaging,1993,12(3):566-574.
  • 8Thanh M N,Jonathan Q M.Gaussian-mixture-modelbased Spatial Neighborhood Relationships for Pixel Labeling Problem[J].IEEE Transactions on Systems Man and Cybernetics Part B:Cybernetics,2012,42(1):193-202.
  • 9Mukherjee A,Sengupta A.Estimating the Probability Density Function of a Nonstationary Non-Gaussian Noise[J].IEEE Transactions on Industrial Electronics,2010,57(4):1429-1435.
  • 10Wang Zhimin,Song Qing.Robust Curve Clustering Based on a Multivariate t-distribution Model[J].IEEE Transactions on Neural Networks,2010,21(12):1976-1984.

同被引文献17

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部