期刊文献+

基于Gabor小波变换的无参考图像模糊度评价

Evaluation on No- reference Image Blur Metric Based on Gabor Wavelet Transform
下载PDF
导出
摘要 当前的各种图像质量评价方法中,模糊是最常考虑的因素之一。针对模糊度量,基于Gabor小波提出了一种新的评价方法。首先利用Gabor小波提取图像高频信息,把原图像分割成高频和低频部分;然后分别对这两部分进行像素点误差累计,算出两部分的差值平均;最后结合这两个值算出模糊度。该方法结合了人类视觉系统模型和误差累计的思想。实验结果表明,模糊质量评价结果与人主观评价结果的相关系数为0.7836,异常值比为0.0443,说明这是一种有效的模糊评价方法。 The ambiguity is one of the factors most frequently considered in a variety of image quality assessment methods. This paper proposes a new evaluation method to detect the blur based on the Gabor wavelet. Firstly, the Gabor Wavelet is used to extract the high - frequency information of image. Then the original image is divided into high frequency and low frequency. Secondly, the two frequencies of image pixel point error are accumulated separately, and the average difference is calculated at the same time. Finally, the blur degree is calculated combining with these two values. The method combines the idea of the Human Visual System Model and cumulative error. The experimental results show that the correlation coefficient of the blur evaluation results and the manual evaluation results is 0. 7836 and the outlier ration is 0.0443, and the method is effective.
出处 《微处理机》 2015年第5期47-49,53,共4页 Microprocessors
基金 国家科技支撑计划课题(2012BAH20B01 2014BAK11B02) 广西高校科学技术研究项目(2013YB092) 广西自然科学基金项目(2012GXNSFAA053232 2013GXNSFAA019326)
关键词 GABOR小波 图像质量 模糊图像 无参考 模糊度评价 人脸视觉系统模型 Gabor wavelet Image quality Blurred image No - reference Blur metric HVSM
  • 相关文献

参考文献13

  • 1Wang Z, Liang L, and Alan C B. Video quality assessment using structural distortion measurement [ C ].//Interna- tional Conference on Image Processing. Rochester: NY, USA,2002.
  • 2魏政刚,袁杰辉,蔡元龙.一种基于视觉感知的图像质量评价方法[J].电子学报,1999,27(4):79-82. 被引量:14
  • 3Marziliano P, Dufaux F, Winkler S, Ibrahimi T. A no reference perceptual blur metric [ C ].//International conference on image processing. Rochester:NY 2002.
  • 4Caviedes J, Gurbuz S. No reference sharpness metric based on local edges Kurtosis [ C ].//IEEE international conference on image processing. Rochester:NY,2002.
  • 5Fun Chung Chung, Jung Ming Wang, Bailey R R, et al. A nonparametric blur measure based on edge analysis for image processing applications [ J ]. IEEE conf Cybern intell syst 2004( 1 ) :356 -360.
  • 6Firestone L, Talsamia N, Preston K, et al. Comparison of autofocus methods of automated microscopy [ J ]. Citome- try:1991 (12) :195 -206.
  • 7Nill N B, Bouzas B H. Objective image quality measure derived from digital image power spectra [ J ]. Opt, Eng: 1992,4(31 ) :813 -825.
  • 8Ong E P, Yun Chung Chung, Jung Ming Wang, et al. No reference quality metric for measuring image blur[ C ].//In Proc IEEE int. Conf. Image processing,sp:2003.
  • 9Zhou Wang, Bovik, A C, LuLi gang. Why is image quality assessment so difficult [ C ].//IEEE International Confer- ence on Acoustics. Speech and Signal Processing: Orlando, USA ,2002.
  • 10Lades M, Vorbruggen J C, Buhmann J, et al. Distortion invariant object recognition in the dynamic link architec- ture [ C ].//IEEE Transactions on Computers : 1993.

二级参考文献2

  • 1Hu Qingmin,UMI dissertation service,1995年
  • 2Xu W,SPIE 2308,1994年,1454页

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部