期刊文献+

Bi_2MoO_6中空微球的制备及其光催化性能 被引量:11

Bi_2MoO_6 Hollow Microspheres Preparation and Photocatalytic Properties
下载PDF
导出
摘要 基于Bi2MoO6与BiOI晶体结构上的相似性,以BiOI为自牺牲模板,通过原位转化法制备得到了Bi2MoO6中空微球。通过对时间演化中间产物以及不同温度下产物的物相和形貌进行分析,得出形成Bi2MoO6中空微球的最佳反应时间为8 h,最佳温度为120℃。对所制备的Bi2MoO6中空微球物相、形貌、比表面积以及光学性能进行了研究,表明Bi2MoO6中空微球表面较为疏松,内部为中空结构,具有较大的比表面积,为61 m2·g-1。在可见光下,以甲基橙为降解对象,对所制备样品的光催化性能进行了评价。结果表明所制备的Bi2MoO6中空微球能在80 min内完全降解甲基橙,性能优于不同时间下的中间产物和片状结构Bi2MoO6的光催化性能,具有优越的可见光光催化性能。 Based on the similarity of crystal structure between Bi2MoO6 and BiOI, Bi2MoO6 photocatalyst with hollow structure was prepared by in-sittt transformation method using BiOI as self-sacrificing template. The phase and morphology of the intermediates obtained at different reaction temperatures and times during BiOI mierospheres transforming to hollow Bi2MoO6 were analyzed. The results showed that the best conditions for preparing Bi2MoO6 hollow mierospheres were 8 h and 120 ℃. Besides, the structure, morphology, specific surface area and optical property of the as-prepared Bi2MoO6 hollow microspheres were studied. The results indicated that the surface of the obtained Bi2MoO6 hollow microspheres were relatively loose, and the specific surface area was 61 m2·g-1. Methyl orange (MO) was selected as a pollutant mode/ to evaluate the visible-light photocatalytic activity of the prepared materials. As a result, MO was completely degraded by Bi2MoO6 hollow microspheres in 80 minutes. The photocatalytic activity of Bi2MoO6 hollow microspheres was obviously superior to Bi2MoO6 sheets and the intermediates obtained at different reaction times.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2015年第11期2152-2158,共7页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.51302108) 江苏省自然科学基金(No.BK20130151) 中央高校基本科研业务费专项资金(No.JUSRP51408B)资助项目
关键词 中空微球 比表面积 Bi2MoO6 可见光光催化 甲基橙 hollow microsphere specific surface area Bi2MoO6 visible-light-driven photocatalytic methyl orange
  • 相关文献

参考文献26

  • 1Fujishima A, Honda K. Nature, 1972,238:37-38.
  • 2Carey J H, Lawrence J, Tosine H M. B. Environ. Contarn. ToxicoL, 1976,16(6):697-701.
  • 3Bard A J. J. Photochem. Photobiol., 1979,10(1):59-75.
  • 4DUAN Fang(-37'), WEI Qu-Fu(l$$), CHEN Ming-Qin (1, ?), et al. Prog. Chem.(4k,)), 2014,26(1):30-40.
  • 5AN Wei-Jia(4SL), LIU Li(]YOJ), LI Qi-Lei(')Tfi]), et al. Chinese J. Inorg. Chem.( , 4E ), 2015,31(2):329- 337.
  • 6WANG Min(3), YANG Chang-Xiu(K), ZHENG Hao -Yan([), et al. Chinese J. Inorg. Chem.(LtE :-), 2015,31(2):309-316.
  • 7Brezesinski K, Ostermann R, Hartmann P, et al. Chem. Mater., 2010,22(10):3079-3085.
  • 8Huang H W, Liu L Y, Zhang Y H, et al. J. Alloys Compd., 2015,619:807-811.
  • 9Li H H, Liu C Y, Li K W, et al. J. Mater. Sci., 2008,43(22): 7026-7034.
  • 10Zhang L W, Xu T G, Zhao X, et al. Appl. Catal. B: Environ., 2010,98:138-146.

同被引文献84

引证文献11

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部