期刊文献+

无色卡尔曼滤波目标跟踪算法的尺度参数调整 被引量:2

Adaptation of Scaling Parameter for Unscented Kalman Filter Target Tracking Algorithm
下载PDF
导出
摘要 利用无色卡尔曼滤波算法来研究目标跟踪过程中非线性随机系统的状态估计问题。在无色卡尔曼滤波算法过程中,目标状态的估计依赖于两个设计参数——尺度参数和方差矩阵式。针对尺度参数的不同选择将会影响整个目标状态估计的性能质量。为此论文提出构造四种不同的最优化性能准则函数,通过对此准则函数的最小化来迭代地自适应选择尺度参数。这四种准则函数从所使用观测信息的不同和尺度参数优化选择的计算复杂度来体现其各自的特性。最后通过仿真算例来验证论文所提出的无色卡尔曼滤波目标跟踪算法的尺度参数自适应调整策略。 The state estimation problem of the nonlinear stochastic systems is studied by means of the unscented Kalman filter algorithm from target tracking process.In the unscented Kalman filter algorithm,the state estimation is influenced by two design parameters—the scaling parameter and a covariance matrix.Because the choice of scaling parameter may lead to the increased quality of the state estimation.So here the four different criterion functions are constructed,and the scaling parameter is chosen adaptively by minimizing one criterion function.The property of each four criterion functions is shown from their own different observed information and computation complexity.Finally,the efficiency and possibility of the adaptation of scaling parameter for unscented Kalman filter target tracking algorithm is confirmed by the simulation example results.
出处 《舰船电子工程》 2015年第10期39-43,共5页 Ship Electronic Engineering
基金 部委级资助项目(863计划)(编号:2013SYAB321)资助
关键词 目标跟踪 无色卡尔曼滤波 尺度参数 自适应调整 target tracking unscented Kalman filter scaling parameter adaptation
  • 相关文献

参考文献9

  • 1王林,王楠,朱华勇,沈林成.一种面向多无人机协同感知的分布式融合估计方法[J].控制与决策,2010,25(6):814-820. 被引量:14
  • 2A. Chiuso. The role of vector autoregressive modeling in predictor based subspace identification[J]. Automatica,2007,43(6) : 1034-1048.
  • 3Yosi B A. Distributed decision and control for coopera- tive UAV using ad hoc communication [J]. IEEE Transaction on Control Systems Technology, 2008, 16 (3) :511-516.
  • 4Chen W H. Nonlinear disturbance observer enhanced dynamic inversion control of missiles [J]. Guidance Control and Dynamics, 2003,26 ( 1 ) : 161-166.
  • 5Fabrizio Giulietti. Dynamics and control of different aircraft formation structures[J]. Aeronautical, 2004, 108(10) : 117-124.
  • 6Fabrizio Giulietti. Dynamics and control issues of for- mation flight[J], Aerospace Science and Technology, 2005,36 (9) : 65-71.
  • 7Karimoddini A. Hybrid three dimensional formation control for unmanned helicopters I J]. Automatica, 2013,49 (2) :424-433.
  • 8Innocenti M. Management of communication failures in formation control with communication relays[J]. Jour- nal of Aerospace Computing Information and Communi- cation, 2004,11 ( 1 ) : 19-35.
  • 9Rezaec H. Motion synchonization in unmanned air- crafts formation control with communication relays [J]. Common Nonlinear Science Number Simulate, 2013,38(18) : 744-756.

二级参考文献16

  • 1Office of the secretary of defense. Unmanned systems roadmap 2007-2032[R]. Washington: DoD of USA, 2007.
  • 2Campbell M E, Wheeler M. Cooperative tracking using vision measurements on seascan UAVs[J]. IEEE Trans on Control Systems Technology, 2007, 15(4): 613-627.
  • 3Liggins M E, Chong C Y, Kadar I. Distributed fusion architectures and algorithms for target tracking[J]. Proc of the IEEE, 1997, 85(1): 95-107.
  • 4Vercauteren T, Wang X. Decentralized sigma-point information filters for target tracking in collaborative sensor networks[J]. IEEE Trans on Signal Processing, 2005, 53(8): 2997-3009.
  • 5Olfati-Saber R, Sandell N E Distributed tracking in sensor networks with limited sensor range[C]. Proc of the 2008 American Control Conf. Seattle, 2008: 3157-3162.
  • 6Lee D J. Nonlinear estimation and multiple sensor fusion using unscented information filtering[J]. IEEE Signal Processing Letters, 2008, 15(12): 861-864.
  • 7Ryan A, Durrant-Whyte H F, Hedrick J K. Informationtheoretic sensor motion control for distribution estimation[C]. Proc of IMECE 2007. Seattle, 2007: 1-10.
  • 8Mutambara A G O. Decentralized estimation and control for multisensor systems[M]. Boca RatonL: CRC, 1998.
  • 9Ridley M, Nettleton E, Goktogan A, et al. Decentralised ground target tracking with heterogeneous sensing nodes on multiple UAVs[C]. Information Processing in Senser Networks. Berlin: Springer, 2003: 545-565.
  • 10Hartikainen J, Sarka S. Optimal filtering with Kalman filters and smoothers- A manual for matlab toolbox EKF/UKF [R]. Espoo: Helsinki University of Technology, 2008.

共引文献13

同被引文献10

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部