期刊文献+

基于分类的协同过滤图书推荐系统应用研究 被引量:1

Research on the Application of Collaborative Filtering Recommendation System Based on Classification
下载PDF
导出
摘要 随着社会的发展,图书馆图书的总量呈数量级增长,人们面对大量的图书和文献资料变得无从选择,而传统的图书检索技术并不能向读者提供主动式、个性化的检索结果。推荐系统是一种智能化系统,它把用户对目标对象的选择、评价等大量信息通过特定的算法进行处理,根据处理结果形成推荐列表向用户进行推荐,以此提供决策参考。文章将就基于分类的协同过滤图书推荐系统展开研究和探讨。 With the development of society, the total amount of library is orders of magnitude increase, people faced a large number of books and literature don't know how to choice, and the traditional book retrieval technology is not to provide readers with the active and personalized search results. Recommendation system is an intelligent system, it is the user to the target object selection,evaluation of large amounts of information through specific algorithms for processing, according to the processing results in the formation of recommendation list is recommended to the user, in order to provide decision-making reference. This article will study and discuss the collaborative filtering recommendation system based on classification.
作者 陈泽波
出处 《电脑与电信》 2015年第9期60-62,80,共4页 Computer & Telecommunication
关键词 协同过滤 基于分类的协同过滤 推荐系统 collaborative filtering collaborative filtering based on classification recommendation system
  • 相关文献

参考文献9

  • 1谢琳惠.推荐系统在高校数字图书馆的应用研究[J].现代情报,2006,26(11):72-74. 被引量:13
  • 2Resnick P, Iakovou N, Sushak M, et al. GroupLens: An open ar- chitecture for collaborative filtering ofnetnews. Proc 1994 Computer Sup- ported Cooperative Work Conf.. North Carolina: Chapel Hill, 1994:175- 186.
  • 3刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:434
  • 4曾庆辉,邱玉辉.一种基于协作过滤的电子图书推荐系统[J].计算机科学,2005,32(6):147-150. 被引量:14
  • 5孙守义,王蔚.一种基于用户聚类的协同过滤个性化图书推荐系统[J].现代情报,2007,27(11):139-142. 被引量:25
  • 6Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative fil- tering recommendation algorithms[C]. Proc 10th International WWW Conf New York : ACM Press, 2001 : 285-295.
  • 7Lee TQ,Park Y,Park YT. A time-based approach to effective rec- ommender systems using implicit feedback[J]. Expert Systems with Applica- tions, 2008,34(4) : 3055-3062.
  • 8Chen YL, Cheng LC. A novel collaborative filtering approach for recommending ranked items[J]. Expert Systems with Applications, 2008, 34 (4) : 2396-2405.
  • 9Yang MH, Gu ZM. Personalized recommendation based on partial similarity of interests[M]. Advanced Data Mining and Applications Proceed- ings, 2006,4093 : 509-516.

二级参考文献115

  • 1陈松生,王蔚.改进的快速模糊C-均值聚类算法[J].计算机工程与应用,2007,43(10):167-169. 被引量:13
  • 2王辉,高利军,王听忠.个性化服务中基于用户聚类的协同过滤推荐[J].计算机应用,2007,27(5):1225-1227. 被引量:43
  • 3Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 4Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 5梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 6Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 8Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 9Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 10Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87

共引文献477

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部