期刊文献+

正常角膜和圆锥角膜的特征提取 被引量:5

Extracting features from normal corneas and keratoconus based on wavelet analysis
下载PDF
导出
摘要 基于角膜测量仪器Corvis ST采集的图像视频,提出提取新特征参数以便准确区分正常角膜和圆锥角膜。首先对图像进行滤波、分割等预处理,检测角膜上下边界,并计算前角膜曲率值;用小波变换分析角膜曲率变化,获取与角膜运动趋势相关的特征,包括角膜运动的整体趋势和角膜振动的范数和标准差。然后,基于均方误差最小化法,提取特征参数,构建最优参数。最后,用支持向量机(SVM)对正常角膜和圆锥角膜进行分类。从频率的角度实施的实验显示角膜在基本运动趋势上存在着振动过程。此外,提出的参数优于形变幅度(DA)、峰值距离(PD)等传统参数,使准确度、灵敏度和特异性分别提高了10.2%,5.7%和6.9%。受试者工作特征曲线(ROC)下面积为0.948,接近于1。结果显示本文方法自动提取的特征参数可提高正常角膜和圆锥角膜区分的准确性,对临床诊断有辅助作用。 On the basis of video image captured by the cornea measuring instrument Corvis ST,this paper proposes an idea to improve the accuracy of distinguishing normal corneas from keratoconic corneas by extracting new feature parameters,Firstly,the original images were preprocessed by filtering and segmenting to detect the upper and lower boundaries of the cornea and calculate the curvature ofanterior cornea.Then,the change of corneal curvature was analyzed by wavelet transformation method to obtain features related to the trend of corneal movement,including the trend of the whole corneal motion as well the norm and the standard deviation of corneal vibration.Furthermore,the feature parameters were extracted in succession and the optimal parameter was obtained by the minimum mean square error algorithm.The Support Vector Machine(SVM)was finally applied to distinction of normal corneas from keratoconic corneas.The experiment results on the frequency indicate that there are corneal vibrations along with the basic movement process.Besides,the proposed parameters are better than traditional parameters such as Deformation Amplitude(DA),Peak Distance(PD)at the highest concavity,which improves the accuracy,sensitivity and specificity by 10.2%,5.7% and6.9%,respectively.Moreover,the area under the receiver operating characteristic curve(ROC)is0.948,close to unity.The automatic extracted feature parameters in this paper are able to improve the accuracy of classification between normal and keratoconic corneas and contribute to the clinical diagnoses.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2015年第10期2919-2926,共8页 Optics and Precision Engineering
基金 国家973重点基础研究发展计划资助项目(No.2015CB755500) 国家自然科学基金资助项目(No.61471125 No.81271052) 香港理工大学内地联合监督计划资助项目(No.G-UB58)
关键词 角膜 圆锥角膜 特征提取 最小均方误差算法 Corvis ST 小波变换 cornea keratoconic cornea feature extraction minimum mean square error algorithm Corvis ST wavelet transform
  • 相关文献

参考文献6

二级参考文献71

  • 1李慧,王云鹏,李岩,王兴芳.基于SVM和PWC的遥感影像混合像元分解[J].测绘学报,2009,38(4):318-323. 被引量:15
  • 2吴波,张良培,李平湘.基于支撑向量机概率输出的高光谱影像混合像元分解[J].武汉大学学报(信息科学版),2006,31(1):51-54. 被引量:15
  • 3吴波,张良培,李平湘.基于支撑向量回归的高光谱混合像元非线性分解[J].遥感学报,2006,10(3):312-318. 被引量:29
  • 4BRUZZONE A A G,MONTANARO J S,FERRANDO A,et al..Wavelet analysis for surface characterisation:an experimental assessment[J].CIRP Annals -Manufacturing Technology,2004,53(1):479-482.
  • 5International Organization for Standardization.ISO4287:1997.Geometrial product specificatin(GPS)-surface texture:profile method-terms,definitions and surface texture parameters[S].Switzerland:International Organization for Standardization.
  • 6RAJA J,MURALIKRISHNAN B,SHENGYU F.Recent advances in separation of roughness,waviness and form[J].Precision Engineering,2002,26(2):222-235.
  • 7XIAO S J,JIANG X Q,BlUNT L,et al..Comparison study of the biorthogonal spline wavelet filtering for areal rough surfaces[J].International Journal of Machine Tools & Manufacture,2001,41(13-14):2103-2111.
  • 8SHENGYU F,MURALIKRISHNAN B,RAJA J.Engineering surface analysis with different wavelet bases[J].Journal of Manufacturing Science and Engineering,2003,125:844-852.
  • 9AMIR Z A,VALERY A Z.Construction of bior-thogonal discrete wavelet transforms using interpolatory splines[J].Applied and Computational Harmonic Analysis,2002,12(1):25-56.
  • 10AMIR Z A,ALEXANDERl B P,VALERY A Z.Butterworth wavelet transforms derived form discrete interpolatory splines; recursive implementation[J].Signal Processing,2001,81(11):2363-2382.

共引文献82

同被引文献21

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部