摘要
It becomes increasingly clear that non-uniform distribution of immiscible fluids in porous rock is particularly relevant to seismic wave dispersion. White proposed a patchy saturation model in 1975, in which spherical gas pockets were located at the center of a liquid saturated cube. For an extremely light and compressible inner gas, the physical properties can be approximated by a vacuum with White's model. The model successfully analyzes the dispersion phenomena of a P-wave velocity in gas-water- saturated rocks. In the case of liquid pocket saturation, e.g., an oil-pocket surrounded by a water saturated host matrix, the light fluid-pocket assumption is doubtful, and few works have been reported in White's framework. In this work, Poisson's ratio, the bulk modulus, and the effective density of a dual-liquid saturated medium are formulated for the heterogeneous porous rocks containing liquid-pockets. The analysis of the difference between the newly derived bulk modulus and that of White's model shows that the effects of liquid-pocket saturation do not disappear unless the porosity approaches zero. The inner pocket fluid can no longer be ignored. The improvements of the P-wave velocity predictions are illustrated with two examples taken from experiments, i.e., the P-wave velocity in the sandstone saturated by oil and brine and the P-wave velocity for heavy oils and stones at different temperatures.
It becomes increasingly clear that non-uniform distribution of immiscible fluids in porous rock is particularly relevant to seismic wave dispersion. White proposed a patchy saturation model in 1975, in which spherical gas pockets were located at the center of a liquid saturated cube. For an extremely light and compressible inner gas, the physical properties can be approximated by a vacuum with White's model. The model successfully analyzes the dispersion phenomena of a P-wave velocity in gas-water- saturated rocks. In the case of liquid pocket saturation, e.g., an oil-pocket surrounded by a water saturated host matrix, the light fluid-pocket assumption is doubtful, and few works have been reported in White's framework. In this work, Poisson's ratio, the bulk modulus, and the effective density of a dual-liquid saturated medium are formulated for the heterogeneous porous rocks containing liquid-pockets. The analysis of the difference between the newly derived bulk modulus and that of White's model shows that the effects of liquid-pocket saturation do not disappear unless the porosity approaches zero. The inner pocket fluid can no longer be ignored. The improvements of the P-wave velocity predictions are illustrated with two examples taken from experiments, i.e., the P-wave velocity in the sandstone saturated by oil and brine and the P-wave velocity for heavy oils and stones at different temperatures.
基金
Project supported by the Open Foundation of SINOPEC Key Laboratory of Geophysics(No.WTYJY-WX2013-04-02)
the National Key Basic Research Program of China(973 Program)(No.2014CB239006)
the 12th 5-Year Basic Research Program of China National Packaging Corporation(CNPC)(No.2014A-3611)