期刊文献+

G-S模型下的协同过滤算法

A collaborative filtering algorithm on G-S model
下载PDF
导出
摘要 针对协同过滤算法忽视供应商偏好、存在稀疏矩阵导致准确率低的现象,提出一种改进的协同过滤算法。利用改进的相似度计算方法填充评分矩阵,计算目标用户的评分,将目标用户评分作为G-S算法的输入项,得到消费者、供应商的匹配结果。仿真结果表明,算法具有较高的满意度和准确率。 The absence of supplies' interest and the execution efficiency of recommendation technology based on collaborative filtering algorithm is relatively low with the data sparsity,so a modified collaborative filtering algorithm is proposed.Firstly,it prefills the rating matrix by the approved algorithm and makes sure of the users' rates.Then the improved G-S algorithm for consumers and sellers provides appropriate match on both sides according to the recommended goods based on the collaborative filtering algorithm.The experimental results show that the algorithm has high execution and satisfaction.
作者 顾凯 刘建明
出处 《桂林电子科技大学学报》 2015年第5期395-400,共6页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61262074)
关键词 协同过滤算法 满意值 PARETO最优 信息熵 collaborative filtering algorithm satisfaction Pareto principle information entropy
  • 相关文献

参考文献9

二级参考文献41

  • 1张锋,常会友.基于分布式数据的隐私保持协同过滤推荐研究[J].计算机学报,2006,29(8):1487-1495. 被引量:17
  • 2陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 3Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 4Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 5Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 6Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 7Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 8Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 9Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 10Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.

共引文献684

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部