期刊文献+

基于NSGPBB算法的压缩感知稀疏信号重构

Compressed sensing sparse signal reconstruction based on NSGPBB algorithm
下载PDF
导出
摘要 为了更好地重构原始信号,提出一种带有交替BB步长的非单调梯度投影算法(NSGPBB)。将无约束凸优化问题转化为在闭凸集上的边界约束二次规划问题,并证明了该算法的收敛性。数值实验结果表明,该算法是有效的,且收敛速度快于梯度投影算法。 To solve a key problem of sparse signal reconstruction,a nonmonotone gradient projection algorithm with the alternation of Barzilai-Borwein rules(NSGPBB)is proposed for bound-constrainted quadratic programming(BCQP)on a convex set.Global convergence of this method is proved.The numerical results show that the method is effective and faster than other spectral gradient projection algorithms.
作者 郭晓 李向利
出处 《桂林电子科技大学学报》 2015年第5期427-430,共4页 Journal of Guilin University of Electronic Technology
基金 广西自然科学基金(2014GXNSFAA118003) 广西教育厅科研项目(ZD2014050)
关键词 压缩感知 谱梯度投影算法 稀疏重构 二次规划 交替BB步长 compressed sensing spectral gradient projection sparse reconstruction quadratic programming alternation of Barzilai-Borwein rules
  • 相关文献

参考文献14

  • 1Donoho D L. Compressed sensing[J]. IEEE Transac- tions on Information Theory,2006,52(4) : 1289]306.
  • 2Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction:application to com- pressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007,1 (4) :586-597.
  • 3Kim S J,Koh K,Lustig M,et al. An efficient method for compressed sensing[C]//IEEE International Conference on Image Processing, 2007 : 117]20.
  • 4Elad M. Why simple shrinkage is still relevant for re- dundant representations[J]. IEEE Transactions on In- formation Theory, 2006,52(12) : 5559-5569.
  • 5Malioutov D M,Cetin M,Willsky A S. Homotopy con- tinuation for sparse signal representation[C]//IEEE In- ternational Conference on Acoustics, Speech, and Signal Processing, 2005 : 733-736.
  • 6Candes E,Braun N,Wakin M. Sparse signal and image recovery from compressive samples[C]//IEEE Interna- tional Symposium on Biomedical Imaging: From Nano to Macro, 2007 : 976-979.
  • 7Birgin E G,Martinez J M, Raydan M. Nonmonotone spectral projected gradient methods on convex sets[J]. SIAM Journal on Optimization, 2000,10(4) : 1196]211.
  • 8Zhang Hongchao, Hager W W. A nonmonotone line search technique and its application to unconstrained op- timization[J]. SIAM Journal on Optimization, 2004,14 (4) : 1043]056.
  • 9毕亚倩,刘新为.求解界约束优化的一种新的非单调谱投影梯度法[J].计算数学,2013,35(4):419-430. 被引量:10
  • 10FrassoldatiG, Zanni L, Zanghirati G. New adaptive stepsize selections in gradient methods [J]. Journal of Industrial and Management Optimization, 2008,4 ( 2 ) : 299-312.

二级参考文献24

  • 1周斌,高立,戴彧虹.求解大规模带边界约束二次规划问题的单调投影梯度法[J].中国科学(A辑),2006,36(5):556-570. 被引量:4
  • 2袁亚湘,孙文瑜.最优化理论方法[M].北京:科学出版社,1997.
  • 3Mor@ J, Toraldo G. On the solution of large scale quadratic programming problem with bound constraints[J]. SIAM Journal on Optimization, 1991, 1: 93-113.
  • 4Friedlander A, Martinez J M, Santos S A. A new trust region algorithm for bound constrained minimization[J]. Applied Mathematics and Optimization, 1994, 30: 235-266.
  • 5Conn A R, Gould N I M, Toint Ph L. Trust Region Methods. MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
  • 6Ulbrich M. Nonmonotone trust region methods for bound-constrained semi-smooth equation with application to nonlinear complementarity problems[J]. SIAM Journal on Optimization, 2001, 11: 889-917.
  • 7Birgin E G, Martinez J M, Raydan M. Nonmonotone spectral projected gradient methods on convex sets[J]. SIAM J Optim, 2000, 10: 1196-1211.
  • 8Dai Y H, Fletcher R. Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming[J]. Numer Math, 2005, 100: 21-47.
  • 9Yu Z S. Solving bound constrained optimization via a new nonmonotone spectral projected gradiet method[J]. Appl. Numer. Math. 2008, 58: 1340-1348.
  • 10Yu Z, Sun J, Qin Y. A multivariate spectral projected gradient method for bound constrained optimization[J]. J. Comput. Appl. Math. 2011, 235: 2263-2269.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部