摘要
为了更好地重构原始信号,提出一种带有交替BB步长的非单调梯度投影算法(NSGPBB)。将无约束凸优化问题转化为在闭凸集上的边界约束二次规划问题,并证明了该算法的收敛性。数值实验结果表明,该算法是有效的,且收敛速度快于梯度投影算法。
To solve a key problem of sparse signal reconstruction,a nonmonotone gradient projection algorithm with the alternation of Barzilai-Borwein rules(NSGPBB)is proposed for bound-constrainted quadratic programming(BCQP)on a convex set.Global convergence of this method is proved.The numerical results show that the method is effective and faster than other spectral gradient projection algorithms.
出处
《桂林电子科技大学学报》
2015年第5期427-430,共4页
Journal of Guilin University of Electronic Technology
基金
广西自然科学基金(2014GXNSFAA118003)
广西教育厅科研项目(ZD2014050)
关键词
压缩感知
谱梯度投影算法
稀疏重构
二次规划
交替BB步长
compressed sensing
spectral gradient projection
sparse reconstruction
quadratic programming
alternation of Barzilai-Borwein rules