期刊文献+

基于微分博弈的在线社交网络恶意程序传播优化控制方法 被引量:4

Differential Game-Based Optimal Control Method for Preventing Malware Propagation in Online Social Network
下载PDF
导出
摘要 针对在线社交网络(OSN)易传播恶意程序的现状,通过扩展传统的传染病理论,在考虑防御者和恶意程序主观努力度的基础上,提出了能确切描述OSN恶意程序的微分方程模型。利用微分博弈,建立了能反映防御者和恶意程序交互过程的OSN"恶意程序防御微分博弈"模型,当恶意程序动态改变其最优控制策略时,为防御者给出最优动态控制策略。实验结果表明,提出的方法能明显地抑制OSN恶意程序的传播,为防御OSN恶意程序提供了新途径。 Online social network (OSN) is prone to propagating malware because of their special characteristics. By developing traditional epidemic theory and considering effort intensities of the defender and malware, a differential-equation model to suitably describe characteristics of OSN malware was proposed. Using the differential game, a malware-defense game was constructed to reflect interactions between the defender and malware. Thus, optimal dynamic control strategies for the defender were given when the malware dynamically changed its optimal control strategies. Numerical experiments show that the proposed method is obviously able to suppress the malware propagation. Therefore, a novel way to defend OSN malware was provided.
出处 《电信科学》 北大核心 2015年第10期66-73,共8页 Telecommunications Science
基金 国家自然科学基金资助项目(No.61272034) 浙江省自然科学基金资助项目(No.LY13F030012 No.LY13F020035) 绍兴文理学院科研启动项目(No.20145021)~~
关键词 在线社交网络 恶意程序 传染病理论 微分博弈 online social network, malware, epidemic theory, differential game
  • 相关文献

参考文献29

  • 1Wang Y,Wen S,Xiang Y,et al.Modeling the propagation of worms in networks:a survey.IEEE Communications Surveys and Tutorials,2014,16(2):942-960.
  • 2Gao H,Hu J,Huang T,et al.Security issues in online social networks.IEEE Internet Computing,2011,15(4):56-63.
  • 3Makridakis A,Athanasopoulos E,Antonatos S,et al.Understanding the behavior of malicious applications in social networks.IEEE Network,2010,24(5):14-19.
  • 4Chen J,Kiremire A R,Brust M R,et al.Modeling online social network users’profile attribute disclosure behavior from a game theoretic perspective.Computer Communications,2014(49):18-32.
  • 5刘昕,贾春福,石乐义,辛兆君.基于社会计算的IM恶意代码防御机制[J].电子学报,2013,41(6):1130-1139. 被引量:2
  • 6Bose A,Shin K G.Agent-based modeling of malware dynamics in heterogeneous environments.Security and Communication Networks,2013,6(12):1576-1589.
  • 7Faghani M R,Nguyen U T.A study of xss worm propagation and detection mechanisms in online social networks.IEEE Transactions on Information Forensics and Security,2013,8(11):1815-1826.
  • 8Sanzgiri A,Hughes A,Upadhyaya S.Analysis of malware propagation in Twitter.Proceedings of the IEEE Symposium on Reliable Distributed Systems,Braga,Portugal,2013:195-204.
  • 9Feng L,Liao X,Han Q,et al.Dynamical analysis and control strategies on malware propagation model.Applied Mathematical Modeling,2013,37(16-17):8225-8236.
  • 10Khosroshahy M,Mehmet Ali M K,Qiu D.The SIC botnet lifecycle model:a step beyond traditional epidemiological models.Computer Networks,2013,57(2):404-421.

二级参考文献58

  • 1卿斯汉,王超,何建波,李大治.即时通信蠕虫研究与发展[J].软件学报,2006,17(10):2118-2130. 被引量:17
  • 2Staniford S,Paxson V,Weaver N.How to own the Internet in your spare time.In:Proc.of the 11th USENIX Security Symp.2002.149-167.
  • 3Moore D,Shannon C,Voelker GM.Internet quarantine:Requirements for containing self-propagating code.In:Proc.of the 22ndAnnual Joint Conf.of the IEEE Computer and Communications Societies(INFOCOM 2003).2003.1869-1879.[doi:10.1109/INFCOM.2003.1209212].
  • 4Brumley D,Liu LH,Poosankam P,Song D.Design space and analysis of worm defense strategies.In:Proc.of the 2006 ACMSymp.on Information,Computer and Communications Security(ASIACCS 2006).2006.125-137.[doi:10.1145/1128817.1128837].
  • 5Wei Y.Analyzing the performance of Internet worm attack approaches.In:Proc.of the 13th Int’l Conf.on ComputerCommunications and Networks(ICCCN 2004).2004.501-506.[doi:10.1109/ICCCN.2004.1401717].
  • 6Nicol DM,Liljenstam M.Models and analysis of active worm defense.In:Proc.of the MMM-ACNS 2005.LNCS 3685,Heidelberg:Springer-Verlag,2005.38-53.[doi:10.1007/11560326_4].
  • 7Liljenstam M,Nicol DM.Comparing passive and active worm defenses.In:Proc.of the 1st Int’l Conf.on the QuantitativeEvaluation of Systems(QEST 2004).2004.18-27.[doi:10.1109/QEST.2004.1348012].
  • 8Mohi M,Movaghar A,Zadeh PM.A Bayesian game approach for preventing DoS attacks in wireless sensor networks.In:Proc.ofthe 2009 WRI Int’l Conf.on Communications and Mobile Computing.2009.507-511.[doi:10.1109/CMC.2009.325].
  • 9Liu Y,Cristina C,Hong M.A Bayesian game approach for intrusion detection in wireless ad hoc networks.In:Proc.of the 2006Workshop on Game Theory for Communications and Networks.2006.[doi:10.1145/1190195.1190198].
  • 10Scalable simulation framework.http://www.ssfnet.org/homePage.html.

共引文献35

同被引文献44

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部