期刊文献+

利用三维脑核磁共振图像与RBF核支持向量机检测人脑轻度认知障碍

Detection of mild cognitive impairment based on 3D brain magnetic resonance images and RBF kernel SVM
下载PDF
导出
摘要 为了及早检测轻度认知障碍(Mild Cognitive Impairment,MCI),降低阿尔茨海默病的患病率,文章提出一种基于径向基神经网络及核支持向量机(Radial Basis Function-kernel Support Vector Machine,RBF-kSVM)的MCI检测系统,该系统首先读取三维磁共振脑图像并预处理,然后通过主成分分析(Principal Component Analysis,PCA)降低特征维数,采用RBF核支持向量机作为分类模型,RBF的参数通过优化选择。实验数据采用OASIS公共数据库,选择50例正常对照组(Normal Control,NC)与50例MCI患者。十折交叉验证结果显示文中所提出方法的敏感度为84%、特异度为78%、准确度为81%,优于前向神经网络、决策树、支持向量机、齐次与非齐次核支持向量机方法。文中构建的RBF核支持向量机有效,可用于MCI检测。 In order to detect mild cognitive impairment(MCI) and reduce the morbidity rate of Alzhei- mer disease, a novel MCI detection system based on radial basis function-kernel support vector ma- chine(RBF-kSVM) was developed. The system read the 3D magnetic resonance(MR) images with preprocessing, and then employed the principal component analysis(PCA) to reduce the feature dimen- sions, followed by using RBF kernel SVM as the classification model. The parameter of RBF was cho- sen by optimization method. OASIS public data were obtained from Internet, and 50 normal controls (NCs) and 50 MCIs were picked up. The results of 10-fold cross validation showed that the proposed method achieved desired results as 840~ sensitivity, 78~ specificity and 81~ precision, which were superior to the results of forward neural network, decision tree, SVM, homogeneous and inhomoge- neous polynomial kSVM. So the proposed RBF-kSVM is remarkably effective in detecting MCI.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第10期1342-1347,共6页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61273243 51407095) 江苏省科技基础设施重点资助项目(BM2013006) 江苏省科技支撑计划(工业)重点资助项目(BE2012201 BE2014009-3 BE2013012-2) 江苏省高校自然科学研究资助项目(13KJB460011) 江苏省科技成果转化专项资金资助项目(BA2013058) 南京师范大学高层次人才科研启动基金资助项目(2013119XGQ0061)
关键词 磁共振成像 支持向量机 核支持向量机 轻度认知障碍 前向神经网络 决策树 magnetic resonance(MR) imaging support vector machine(SVM) kernel support vector
  • 相关文献

参考文献30

  • 1Hahn K, Myers N, Prigarin S, et. al. Selectively and pro- gressively disrupted structural connectivity of functional brain networks in Alzheimer's disease: revealed by a novel framework to analyze edge distributions of networks detec- ting disruptions with strong statistical evidence [J]. Neuro- Image, 2013,81 : 96- 109.
  • 2李昕,童隆正,周晓霞,王旭.基于MR图像三维纹理特征的阿尔茨海默病和轻度认知障碍的分类[J].中国医学影像技术,2011,27(5):1047-1051. 被引量:18
  • 3Alexander G E, Bergfield K L, Chen K, et. al. Gray matter network associated with risk for Alzheimer's disease in young to middle-aged adults [J]. Neurobiology of Aging, 2012,33 (12) .- 2723- 2732.
  • 4Brookes M J, Vrba J, Mullinger K J, et. al. Source localisati on in concurrent EEG/fMRI: applications at 7T [J]. Neu roImage,2009,45(2) :440-452.
  • 5Zhang Y,Wang S, Ji G, et. al. Genetic pattern search and its application to brain image classification [J]. Mathematical Problems in Engineering, 2013,2013: 580876. http://dx. doi. org/10. 1155/2013/580876.
  • 6Zhang Y,Wang S,Ji G,et. al. An MR brain images classifier system via particle swarm optimization and kernel support vector machine [J]. The Scientific World Journal, 2013,2013. doi: 10. 1155/2013/130134.
  • 7Kubota T, Ushijima Y, Nishimura T. A region-of-interest (ROI) template for three-dimensional stereotactic surface projection (31)-SSP) images: initial application to analysis of Alzheimer disease and mild cognitive impairment [J]. In- ternational Congress Series, 2006,1290 : 128- 134.
  • 8Pennanen C, Kivipelto M,Tuomainen S, et. al. Hippocampus and entorhinal cortex in mild cognitive impairment and ear- ly AD [J]. Neurobio|ogy of Aging,2004,25(3):303-310.
  • 9L6pez M M, Ramirez J, G6rriz J M, et. al. SVM-based CAD system for early detection of the Alzheimefs disease using kernel PCA and LDA [J]. Neuroscienee Letters, 200% 464 (3) 233-238.
  • 10Wang S, Dong Z. Classification of arzheimer disease based on structural magnetic resonance imaging by kernel sup- port vector machine decision tree [J]. Progress in Electro- magnetics Research, 2014,144 : 171- 184.

二级参考文献246

共引文献229

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部