摘要
为了及早检测轻度认知障碍(Mild Cognitive Impairment,MCI),降低阿尔茨海默病的患病率,文章提出一种基于径向基神经网络及核支持向量机(Radial Basis Function-kernel Support Vector Machine,RBF-kSVM)的MCI检测系统,该系统首先读取三维磁共振脑图像并预处理,然后通过主成分分析(Principal Component Analysis,PCA)降低特征维数,采用RBF核支持向量机作为分类模型,RBF的参数通过优化选择。实验数据采用OASIS公共数据库,选择50例正常对照组(Normal Control,NC)与50例MCI患者。十折交叉验证结果显示文中所提出方法的敏感度为84%、特异度为78%、准确度为81%,优于前向神经网络、决策树、支持向量机、齐次与非齐次核支持向量机方法。文中构建的RBF核支持向量机有效,可用于MCI检测。
In order to detect mild cognitive impairment(MCI) and reduce the morbidity rate of Alzhei- mer disease, a novel MCI detection system based on radial basis function-kernel support vector ma- chine(RBF-kSVM) was developed. The system read the 3D magnetic resonance(MR) images with preprocessing, and then employed the principal component analysis(PCA) to reduce the feature dimen- sions, followed by using RBF kernel SVM as the classification model. The parameter of RBF was cho- sen by optimization method. OASIS public data were obtained from Internet, and 50 normal controls (NCs) and 50 MCIs were picked up. The results of 10-fold cross validation showed that the proposed method achieved desired results as 840~ sensitivity, 78~ specificity and 81~ precision, which were superior to the results of forward neural network, decision tree, SVM, homogeneous and inhomoge- neous polynomial kSVM. So the proposed RBF-kSVM is remarkably effective in detecting MCI.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第10期1342-1347,共6页
Journal of Hefei University of Technology:Natural Science
基金
国家自然科学基金资助项目(61273243
51407095)
江苏省科技基础设施重点资助项目(BM2013006)
江苏省科技支撑计划(工业)重点资助项目(BE2012201
BE2014009-3
BE2013012-2)
江苏省高校自然科学研究资助项目(13KJB460011)
江苏省科技成果转化专项资金资助项目(BA2013058)
南京师范大学高层次人才科研启动基金资助项目(2013119XGQ0061)