期刊文献+

基于增强邻域结构方向信息的图像去噪算法

Image denoising algorithm based on enhanced neighboring structural direction information
下载PDF
导出
摘要 文章针对传统的非局部均值算法只关注图像几何结构信息而忽略图像的方向结构信息,提出了一种基于增强邻域结构方向信息的非局部均值算法。通过增强邻域结构方向信息能够更加合理地描述邻域间的相似度,使相似度高的邻域获得更高的权重,相似性度量也具有较强的鲁棒性。实验结果表明,算法能够取得很好的去噪效果,同时能够保留图像的边缘结构信息,特别在结构比较复杂的区域体现得更加明显。 As traditional non-local mean value algorithm only concerns about geometric structural infor- mation of the image while ignores the directional structural information, a new non-local mean value algorithm based on directional information of enhanced neighboring structure is proposed. The simi- larity between the neighbor fields can be described more reasonably by directional information of en- hanced neighboring structure. It makes more similar neighborhoods obtain higher weights and the measurement of similarity is more robust. The experimental results show that the new algorithm a- chieves good denoising effect and reserves marginal information simultaneously. The result is much better especially in the area where structure is more complicated.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第10期1358-1362,共5页 Journal of Hefei University of Technology:Natural Science
关键词 图像去噪 非局部均值 方向结构信息 图像冗余信息 邻域相似性 相似性度量 image denoising non-local mean value directional structural information image redun- dant information neighborhood similarity similarity measurement
  • 相关文献

参考文献11

  • 1Buades A, Coil B, Morel J M. A review of image denoising algorithms,with a new one [J]. SIAM Journal on Multi- scale Modeling and Simulation, 2006,4 (2) : 490- 530.
  • 2Mahmoudi M, Sapio G. Fast image and video denoising via non-local means of similar neighborhoods[J]. IEEE Signal Process Lett, 2005,12 : 839-842.
  • 3Deledalle C, Salmon J. Image denoising with patch based PCA: local versus global [C]//BMVC, Britain, 2011: 121-130.
  • 4Weng F, Kelong Z. A non-local bilateral filter for image de- noising[C]//2010 International Conference on Appercei- ving Computing and Intelligence Analysis,2010:235-257.
  • 5Fan H, Yu Y, Peng Q. Robust feature-preserving mesh de- noising based on consistent subneighborhoods [J]. IEEE Transaction on Visualizaton and Computer Graphics, 2010, 16(2):312-324.
  • 6Grewening S, Zimmer S, Weickert J. Rotationally invariant similarity measures for nonlocal inage denoising[J]. Journal of Visual Communication and Image Representation, 2011,22:117-130.
  • 7冈萨雷斯.数字图像处理[M].第2版,北京:电子工业出版社,2003.
  • 8Wang Z, Bovik A C, Sheckh H R, et al. Image equality as sessment from error visibi]iy to structural similarity [J]. IEEE Transaction on Image Processing, 2004, 13 (4) 600-612.
  • 9Jiang G, Huang D J, Wang X, et al. Overview on image quality assessment methods[J]. Journnal of Electronics Information Technology, 2010,32 (7) : 219- 226.
  • 10沙浩,江平.基于分类准则的非下采样Contourlet变换域图像去噪[J].合肥工业大学学报(自然科学版),2013,36(7):892-896. 被引量:2

二级参考文献10

  • 1Donoho D L. Denoising by soft-thresholding [J]. IEEETransactions on Information Theory, 1995, 41(3):613-627.
  • 2Crouse M S, Nowak R D. Baraniuk R G. Wavelet-basedstatistical signal processing using hidden Markov models[J]. IEEE Transaction on Signal Processing 1998,46(4):886-902.
  • 3Chang S G,Yu B. Vetterli M. Adaptive wavelet threshol-ding for image denoising and compression[J]. IEEE Transon Image Processing,2000, 9(9) : 1532-1546.
  • 4Kingsbury N G. The dual-tree complex wavelet transform:a new technique for shift invariance and directional filters[C]//IEEE Digital Signal Processing Workshop, DSP 98,Bryce Canyon, 1998 : 86.
  • 5Cunha A L, Zhou J,Do M N. The nonsubsampled cont-ourlet transform: theory,design, and application [J].IEEE Transactions on Image Processing, 2006, 15(10):3089-3101.
  • 6候建华.基于小波及其统计特性的图像去噪方法研究[D].武汉:华中科技大学,2007.
  • 7Do M N, Vetterli ML The contourlet transform: an efficientdirectional multiresolution image representation [J]. IEEETrans on Image Processing,2005, 14(12):2091 - 2106.
  • 8Mihcak K,Kozintsev M,Ramchandran I K, et al. Low-complexity image denoising based on statistical modeling ofwavelet coefficients [J]. IEEE Signal Processing Letters.1999,6(12):300-303.
  • 9杨晓慧,焦李成,牛宏娟,王中晔.基于多阈值的非下采样轮廓波图像去噪方法[J].计算机工程,2010,36(4):200-201. 被引量:12
  • 10杨兴明,陈海燕,王刚.基于连分式的广义高斯分布的参数估计[J].合肥工业大学学报(自然科学版),2012,35(7):991-996. 被引量:4

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部