摘要
文章针对传统的非局部均值算法只关注图像几何结构信息而忽略图像的方向结构信息,提出了一种基于增强邻域结构方向信息的非局部均值算法。通过增强邻域结构方向信息能够更加合理地描述邻域间的相似度,使相似度高的邻域获得更高的权重,相似性度量也具有较强的鲁棒性。实验结果表明,算法能够取得很好的去噪效果,同时能够保留图像的边缘结构信息,特别在结构比较复杂的区域体现得更加明显。
As traditional non-local mean value algorithm only concerns about geometric structural infor- mation of the image while ignores the directional structural information, a new non-local mean value algorithm based on directional information of enhanced neighboring structure is proposed. The simi- larity between the neighbor fields can be described more reasonably by directional information of en- hanced neighboring structure. It makes more similar neighborhoods obtain higher weights and the measurement of similarity is more robust. The experimental results show that the new algorithm a- chieves good denoising effect and reserves marginal information simultaneously. The result is much better especially in the area where structure is more complicated.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第10期1358-1362,共5页
Journal of Hefei University of Technology:Natural Science
关键词
图像去噪
非局部均值
方向结构信息
图像冗余信息
邻域相似性
相似性度量
image denoising
non-local mean value
directional structural information
image redun- dant information
neighborhood similarity
similarity measurement