期刊文献+

糖丁基梭菌产丁醇途径在大肠杆菌中的构建及发酵

Construction of butanol-producing pathway from Clostridium saccharobutylicum in Escherichia coli JM109( DE3) and its fermentation
原文传递
导出
摘要 【目的】通过克隆来源于糖丁基梭菌(Clostridium saccharobutylicum DSM13864)丁醇合成途径的关键酶基因(thl A,bcs-operon和adh E),构建产丁醇大肠杆菌。【方法】以Clostridium saccharobutylicum DSM13864的基因组为模板,分别扩增丁醇途径关键酶基因thl A,bcs-operon(crt-bcd1-etf B2-fix B2-hbd)和adh E,构建了两个重组质粒p ETDuet-bcs和pRSFDuet-thl A-adh E,并成功转入E.coli JM109(DE3)实现异源表达,使大肠杆菌具备产丁醇能力。在半厌氧条件下进行重组菌的发酵,并研究不同培养基对产丁醇的影响。【结果】该重组菌在半厌氧条件下经摇瓶发酵丁醇产量达到25.4 mg/L,通过优化培养基后,在TB发酵培养基中丁醇产量可达到34.1 mg/L。【结论】通过构建重组共表达质粒,将糖丁基梭菌来源的丁醇途径关键酶基因在大肠杆菌中表达,成功构建产丁醇大肠杆菌。该研究提供了一株易于操作的丁醇发酵重组大肠杆菌,避免了传统梭菌发酵丁醇生产中苛刻的厌氧条件、易产孢子等限制问题。 [ Objective ] Several key genes ( thlA, bcs-operon/crt-bcdl-etfB2-fixB2-hbd and adhE ) in butanol pathway from Clostridium saccharobutylicum DSMI3864 were cloned, and a butanol-producing Escherichia coli strain was successfully constructed. [ Methods] Using genome of Clostridium saccharobutylicum DSM13864 as template, the key genes in butanol synthesis pathway were amplified, the recombinant plasmids pETDuet-bcs and pRSFDuet-thlA-adhE were constructed. Then the resultant plasmids were transformed into E. coli JM109(DE3) to obtain E. coli BUT1 for butanol production, under the semi-anaerobic condition. Effects of different mediums on butanol production were studied. [ Results] The recombinant E. coli was capable of producing butanol (25. d mg/L) under semi-anaerobic fermentation. After optimization on the fermentation medium, butanol titer reached 34. 1 mg/L. [ Conclusion ] Butanol production by recombinant E. coli harboring exogenous butanol-producing pathway from Clostridium saccharobutylicum provides a feasible solution to overcome the hurdles in traditional butanol production approach by Clostridia.
出处 《微生物学报》 CAS CSCD 北大核心 2015年第11期1427-1436,共10页 Acta Microbiologica Sinica
基金 国家自然科学基金(21276112 31401634) 江苏省自然科学基金(BK20140135 BK20150003)~~
关键词 糖丁基梭菌 大肠杆菌 丁醇 半厌氧发酵 Clostridium saccharobutylicum, Escherichia coli JM109 (DE3) , butanol, semi-anaerobic fermentation
  • 相关文献

参考文献19

  • 1Survase SA, van Heiningen A, Granstrom T. Continuous bio-catalytic conversion of sugar mixture to acetone- butanol-ethanol by immobilized Clostridium acetobutylicum DSM 792. Applied Microbiology and Biotechnology , 2012, 93(6) : 2309-2316.
  • 2Qureshi N, Ezeji TC, Ebener J, Dien BS, Blaschek HP. Butanol production by beijerinckii. Part I: use of acid and enzyme corn fiber. Bioresource Technology, 2008, 5915-5922. Cotta MA, Clostridium hydrolyzed 99 (13):.
  • 3Ni Y, Xia ZY, Wang Y, Sun ZH. Continuous butanol fermentation from inexpensive sugar-based feedstocks by Clostridium saccharobutylicum DSM 13864. Bioresource Technology, 2013, 129: 680-655.
  • 4Ravagnani A, Jennert KCB, Steiner E, Grtlnberg R,Jefferies JR, Wilkinson SR, Young DI, Tidswell EC, Brown DP, Youngman P, Morris JG, Young M. Spo0A directly controls the switch from acid to solvent production in solvent-forming Clostridia. Molecular Microbiology, 2000, 37(5): 1172-1185.
  • 5Steen E J, Chan R, Prasad N, Myers S, Petzold C J, Redding A, Ouellet M, Keasling JD. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microbial Cell Factories, 2008, 7 ( 1 ) : 36.
  • 6Berezina OV, Zakharova NV, Brandt A, Yarotsky SV, Schwarz WH, Zverlov VV. Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Applied Microbiology and Biotechnology, 2010, 87 (2) : 635 -646.
  • 7Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC. Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Engineering, 2008, 10(6) : 305-311.
  • 8Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Applied Microbiology and Biotechnology, 2008, 77 (6) : 1305-1316.
  • 9Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KL. Engineering alternative butanol production platforms in heterologous bacteria. Metabolic Engineering, 2009, 11(4/5) : 262-273.
  • 10Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Applied and Environmental Microbiology, 2011, 77 (9) : 2905-2915.

二级参考文献123

  • 1Ezeji TC, Qureshi N, Blaschek HP. Bioproduction of butanol from biomass: from genes to bioreactors. CurrentOpinion in Biotechnology, 2007, 18 (3) :220-227.
  • 2Qureshi N, production biomass ) : Bioproducts Ezeji TC. Butanol, 'a superior biofuel' from agricultura| residues ( renewable recent progress in technology. Biofuels, and Biorefining, 2008, 2(4) :319-330.
  • 3Mitchell WJ. Physiology of carbohydrate to solvent conversion by clostridia. Advances in Microbial Physiology, 1997, 39:31-130.
  • 4Bahl H, Andersch W, Braun K, Gottschalk G. Effect of pH and Butyrate Concentration on the Production of Acetone and Butanol by Clostridium acetobutylicum Grown in Continuous Culture. Applied Microbiology and Biotechnology, 1982, 14 : 17-20.
  • 5Haggstrom L. Acetone-butanol fermentation and its variants. Biotechnology Advances, 1985, 3 ( 1 ) : 13-28.
  • 6Brown DP, Ganova-Raeva L, Green BD, Wilkinson SR, Young M, Youngman P. Characterization of spo0A homologues in diverse Bacillus and Clostridium species identifies a probable DNA-binding domain. Molecular Microbiology, 1994, 14(3):411-426.
  • 7Ravagnani A, Jennert KCB, Steiner E, Grtinberg R, Jefferies JR, Wilkinson SR, Young DI, Tidswell EC, Brown DP, Youngman P, Gareth Morris J and Young M. Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Molecular Microbiology, 2002, 37 ( 5 ) : 1172 - 1185.
  • 8Bond-Watts BB, Bellerose RJ, Chang MCY. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nature Chemical Biology, 2011, 7 : 222-227.
  • 9Farmer WR, Liao JC. Improving lycopene production in E. coli by engineering metabolic control. Nature Biotechnology, 2000, 18:533-537.
  • 10Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a meva|onate pathway in E. coli for production of terpenoids. Nature Biotechnology, 2003, 21:796-802.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部