期刊文献+

基于深度置信网络和生成模型的驾驶疲劳识别

Driver Fatigue Recognition Based on Deep Belief Network and Generative Model
下载PDF
导出
摘要 驾驶疲劳识别研究对预防交通事故提高交通安全具有重要意义.提出了一种基于深度置信网络和生成模型的驾驶疲劳识别方法.为了有效地表示疲劳,采用深度置信网络从人脸图像中提取疲劳特征;结合已标注样本和未标注样本,提出了一种基于生成模型的半监督学习的疲劳识别方法,解决了疲劳识别中的小样本问题.在自建疲劳数据库上,采用该方法进行了驾驶疲劳识别的仿真实验,同时和其他几种方法进行了对比,结果表明该方法具有更高的识别精度. Driver fatigue recognition has great theoretical significance and applied value in reducing accidents and improving traffic safety.A novel method based on deep belief network and generative model is proposed for driver fatigue recognition.In order to represent fatigue effectively,fatigue features are extracted using deep belief network(DBN)from the facial image.The semi-supervised learning method for fatigue recognition based on generative model is proposed to solve the problem of small sample in recognition,which makes use of both the labeled and unlabeled samples.Experiments were performed on self-built database to test and evaluate the proposed method.The experiment results show that our method has higher recognition accuracy than other state-of-the-art methods.
作者 王军 夏利民
出处 《湘潭大学自然科学学报》 CAS 北大核心 2015年第3期75-81,共7页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金项目(50808025) 湖南省科技计划项目(2014FJ3057)
关键词 疲劳识别 特征提取 深度置信网络 生成模型 fatigue recognition feature extracting deep belief network generative model
  • 相关文献

参考文献18

  • 1SINGH M,KAUR G. Drowsy detection on eye blink duration using algorithm[J],International Journal of E-merging Technology and Advanced Engineering, 2012,2(4) : 155 -164.
  • 2AHMED R,EMON KEK, H OSS AIN M F. Robust driver fatigue recognition using image processing[C]//2014 International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, BANGLADESH :IEEE,2014: 74 - 83.
  • 3CYGANEK B, GRUSZCZYNSKI S. Hybrid computer vision system for driversJ eye recognition and fatiguemonitoring[J]. Neural computation.2014,126(4) :78 -94.
  • 4DASGUPTA A,GEORGE A,HAPPY S L,et al. A vision based system for monitoring the loss of attention inautomotive drivers[J]. IEEE Transactions on Intelligent Transportation Systems,2013.14(4) : 1 825 - 1 838.
  • 5MASSALA G L,GROSSO E. Real time detection of driver attention: Emerging solutions based on robust i-conic classifiers and dictionary of poses[J], Transportation Research part C- emerging Technologies,2014,49:32-42.
  • 6BAO C Y. Multiscale dynamic features based driver fatigue detection[J]. International Journal of Pattern Rec-ognition and Artificial Intelligence* 2009,23(3) : 3 575 - 3 589.
  • 7VURAL E, CETIN M, ERCIL A,et al. Drowsy driver detection using facial movement analysis[C]. Proc ofthe IEEE international conference on Human-computer interaction, Berlin Heidelberg: Springer-Verlag,2007 :6-18.
  • 8VURAL E, BARTLET M S,LITTLEWORT G. Discrimination of moderate and acute drowsiness based onspontaneous facial expressions[C]. IEEE International Conference on Pattern Recognition,2010: 123 - 135.
  • 9陈云华,余永权,张灵,丁伍洋.基于面部视觉特征的精神疲劳可拓辨识模型[J].计算机科学,2013,40(2):284-288. 被引量:5
  • 10DWIVEDIK,BISWARANJAN K,SETHI A. Drowsy driver detection using representation learning[C].2014 IEEE International Advance Computing Conference (IACC) , 2014 * 135 - 147.

二级参考文献12

  • 1王磊,吴晓娟,巴本冬,董文会.一种基于视觉的PERCLOS特征提取方法[J].计算机工程与科学,2006,28(6):52-54. 被引量:8
  • 2何源,罗予频,胡东成.基于测地线活动区域模型的非监督式纹理分割[J].软件学报,2007,18(3):592-599. 被引量:15
  • 3Ji Qiang,Zhu Zhi-wei,Lan Pei-lin. Real-Time Nonintrusive Monitoring and Prediction of Driver Fatigue[J].IEEE Transactions on Vehicular Echnology,2004,(04):1052-1068.doi:10.1109/TVT.2004.830974.
  • 4Ji Qiang,Lan Pei-lin,Looney C. A Probabilistic Framework for Modeling and Real-Time Monitoring Human Fatigue[J].IEEE Transactions on System Man and Cybernetics PartA:System and Humans,2006,(05):862-875.
  • 5杨春燕;蔡文.可拓工程[M]北京:科学出版社,200718-97.
  • 6李仕维;李乃民;王春燕.人体疲劳面部变化观察[J]中国健康月刊,2011(07):70-71.
  • 7Ji Q,Yang X. Real time visual cues extraction for monitoring driver vigilance[A].Vancouver,Canada:Springer,2001.107-124.
  • 8Norimatsu Y,Mita S,Kozuka K. Detection of the gaze direction using the time varying image processing[A].Nagoya,Japan:IEEE,2003.74-79.
  • 9Abtahi S;Hariri B;hammadi S S.Driver Drowsiness Monitoring based on Yawning Detection[A]浙江杭州,20111606-1610.
  • 10Zhu Z,Ji Q. 3D face pose tracking from an uncalibrated monocular camera[A].Cambridge,UK,2004.400-403.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部