期刊文献+

像素点特征加权的尺度自适应跟踪算法 被引量:3

Pixel feature-weighted scale-adaptive object tracking algorithm
下载PDF
导出
摘要 针对目标运动过程中的姿态变化、旋转、干扰以及缩放等情况,提出了结合像素点特征加权的尺度自适应跟踪算法。首先利用目标区域中每个像素点的颜色特征和位置特征,建立目标模型;其次用目标的平均权值图估算尺度变化系数,以实现目标尺度的自适应;最后构建一个更新模型,对跟踪过程中的目标模型和背景模型进行更新。实验表明,提出的算法充分利用目标区域内各像素点间的差异,可以做到快速、有效的跟踪,且具有较强的顽健性。 An effective object tracking method using weighted pixel features was proposed to deal with all kinds of complicated tracking situations, such as target movement, rotation, background interference and scaling and so on. First, the color feature and location information of the pixels in the target area were used to build the object model. Then the average weight image was used to estimate the scale variation coefficient. The aim was to adapt to the scale changes of the target. Finally, an update model was proposed, which was able to renew the object model and background model. The experimental results show that the proposed algorithm could make full use of the differences between pixels in the target area, so it can track more quickly and more effectively with strong robustness.
出处 《通信学报》 EI CSCD 北大核心 2015年第10期200-210,共11页 Journal on Communications
基金 国家自然科学基金资助项目(61105042 61462035) 江西省教育厅科技基金资助项目(GJJ13421)~~
关键词 目标跟踪 尺度自适应 更新模型 像素点特征加权 object tracking scale-adaptive model updating pixel weighted-feature
  • 相关文献

参考文献16

  • 1ZHANG K, SONG H. Real-time visual tracking via online weighted multiple instance learning[J]. Pattern Rognitiun, 2013, 46( 1 ): 397-411.
  • 2ZHANG K, ZHANG L, YANG M H. Real-time compressive track- ing[A]. Computer Vision-ECCV 2012[C]. Springer Berlin Heidelberg, 2012. 864-877.
  • 3ZHANG K, ZHANG L, YANG M H. Real-time object tracking via online discriminative feature selectiun[J]. IEEE Transactions on Image Processing, 2013, 22: 4664-4677.
  • 4COMANICIU D, RAMESH V, MEER P. Real-time tracking of non-rigid objects using mean shift[A]. Proc of IEEE Conference on Computer Vision and Pattern Recognition[C]. 2000.142-149.
  • 5COMANICIU D, RAMESH V, MEER P. Kernel-based object track- ing[J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2003, 25(5): 564-577.
  • 6NING J, ZHANG L, ZHANG D, et al. Robust mean-shift tracking with corrected background-weighted histogram[J]. IET Computer Vi-sion, 2012, 6(1): 62-69.
  • 7NINO J, ZHANG L, ZHANG D, et al. Scale and orientation adaptive mean shift tracklng[J]. Computer Vision, IET, 2012, 6(1): 52-61.
  • 8ZHANG K, ZHANG L, YANG M H, et al. Fast tracking via spa- tio-temtroral context learning[J], arXiv ixelxint arXiv: 1311.1939, 2013.
  • 9赵凌,冯镔,邱锦波.基于自适应分块外观模型的视觉跟踪[J].通信学报,2011,32(10):166-173. 被引量:3
  • 10覃光成,尹浩,陈强,吴泽民,杨盘隆.面向价值的战场信息处理与分发优化算法[J].通信学报,2011,32(3):60-68. 被引量:8

二级参考文献34

  • 1CORSARO A, ROMA S S. Quality of Service in Publish/Subscribe Middleware[C]. 2006.
  • 2aWANG R Y, STRONG D M. Beyond accuracy: what data quality means to data consumers[J]. Journal of Management Information Systems, Spring, 1996, 12(4): 5-33.
  • 3KLEIN B D. User perceptions of data quality: Internet and traditional text sources[J]. The Journal of Computer Information Systems, 2001, 41(4): 9-18.
  • 4KNIGHT S, BURN B. Developing a framework for assessing information quality on the World Wide Web[J]. Informing Science: International Journal of an Emerging Transdiscipline, 2005, 8(5): 159-172.
  • 5BISDIKIAN C, et al. Building principles for a quality of information specification for sensor-originated information[A]. Conference on Information Fusion (Fusion'09)[C]. Seattle, WA, USA, 2009.
  • 6LU H L. Quality of service standardization for next generation networks[A]. ITU-T Workshop on NGN in Collaboration with IETF, ITU Headquarters[C]. Geneva, Switzerland, 2005.
  • 7BISDIKIAN C, et al. A letter soup for the quality of information in sensor networks[A]. IEEE Information Quality and Quality of Service (IQ2S) Workshop (in IEEE PerCom'09)[C]. 2009.
  • 8THORNLEY D J, JAMES J. Defining and estimating value to a mission[A]. ACITA 09[C]. 2009.
  • 9Flowing Valued Information, US DoD Contract MIPR9-FDATXR048[S].
  • 10Open Geospatial Consortium Inc, OGC Sensor Web Enablement: Overview and High Level Architecture. White Paper[Z]. 2006.

共引文献9

同被引文献22

  • 1BAI Y, TANG M. Robust tracking via weakly supervised ranking SVM[C]//The IEEE Conference on Computer Vision and Pattern Recognition. 2012: 1854-1861.
  • 2GRABNER H, BISCHOF H. On-lino boosting and vision[C]//The IEEE Confcranc on Computer Vision and Patton Recognition. 2006: 260-267.
  • 3ADAM A, RIVLIN E, SHIMSHONI I. Robust fragments-based track- ing using the integral histograrn[C]//The IEEE Conference on Com- puter Vision and Pattern Recognition. 2006: 798-805.
  • 4HU H, MA B, WU Y, et al. Kernel regression based online boosting tracking[J]. Journal of Information Science and Engineering, 2015, 31(1): 267-282.
  • 5YANG F, LU H, YANG M H, Robust visual tracking via multiple kernel boosting with affinity constraints[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(2): 242-254.
  • 6GRABNER H, LEISTNER C, BISCHOF H. Semi-supervised on-line boosting for robust tracking[C]//The European Conference on Com- puter Vision. 2008: 234-247.
  • 7BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
  • 8RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//The International Conference on Computer Vision. 2011: 2564-2571.
  • 9PERNICI F, DEL B A. Object tracking by oversampling local fea- tures[J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2014, 36(12): 2538-2551.
  • 10WU Y, LIM J, YANG M H. Online object tracking: a bench- mark[C]//The IEEE Conference on Computer Vision and Pattern Rec- ognition. 2013: 2411-2418.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部