期刊文献+

考虑弥散尺度效应的两点吸附溶质运移模型及半解析解 被引量:1

Semi-analytical solution for two-site adsorption solute transport model with scale-dependent dispersion
原文传递
导出
摘要 该文考虑弥散尺度效应,建立了有限土柱中溶质运移的两点吸附降解模型。采用Laplace变换和数值反演方法求得了模型的半解析解,并应用试验资料对模型进行了验证。应用半解析解模拟分析了弥散尺度效应、平衡吸附点位所占比例及边界条件对溶质运移过程的影响。结果表明:弥散尺度效应越强土壤溶质运移锋面越远,分布范围越广,溶质浓度峰值越小。平衡吸附点位所占比例越小溶质运移锋面越远,但对溶质分布范围与浓度峰值影响不大。当经验常数a为1.0 m-1时,有限土柱和半无限土柱中溶质浓度几乎一致,出口附近处有限土柱中浓度模拟结果较高;当经验常数a小于1.0 m-1时,模拟结果恰好相反。 A scale-dependent dispersion solute transport model with the equilibrium/non-equilibrium two-site adsorption and microbiological degradation in a finite column was developed. The semi-analytical solutions for solute transport were obtained by using Laplace transformation technique and numerical inversion method and validated with laboratory experimental data. The effects of the empirical constant (a) represented the scale-dependent dispersion, the proportion (f) of equilibrium sites to total sites and the outlet boundary condition of the model on the solute transport were analyzed. The results indicated that the solute front increased with the increase of a or the decrease of f. The spreading of the solute increase and the peak concentrations decrease with the increase of a, had little change with f. The concentrations calculated by the solutions for semi-infinite domains were similar to the concentrations by the solutions for infinite domains at places close to the inlet boundaries, but always lower at places close to the outlet boundaries when the empirical constant α was 1.0 m^-1. It's just opposite when α was less than 1.0 m^-1.
出处 《水动力学研究与进展(A辑)》 CSCD 北大核心 2015年第5期580-586,共7页 Chinese Journal of Hydrodynamics
基金 国家自然科学基金资助项目(51239009 51179150)
关键词 溶质运移 弥散尺度效应 两点吸附 LAPLACE变换 半解析解 solute transport scale-dependent dispersion two-site adsorption Laplace-transform semi-analytical solution
  • 相关文献

参考文献16

  • 1VAN GENUCHTEN M T, ALVES W J. Analytical solu- tions of the one-dimensional convective-dispersive so- lute transport equation[M]. Technical Bulletin, No.1661, U.S. Department of Agriculture, Washington, DC, 1982.
  • 2ZISKINDA G~ SHMUELIA H, GITIS V. An analytical solution of the convection dispersion reaction equation for a finite region with a pulse boundary condition[J]. Chemical Engineering Journal, 2011, 167(1): 403-408.
  • 3PICKENS J F, GRISAK G E. Modeling of scale-depe- ndent dispersion in hydro-geologic systems[J]. Water Resources Research, 1981, 17(6): 1701-1711.
  • 4YATES S R. An analytical solution for one- dimensional transport in heterogeneous porous media[J]. Water Re- sources Research, 1990, 26(10): 2331-2338.
  • 5张德生,沈冰,沈晋,王全九.稳态条件下土壤溶质运移的两区模型及其解析解[J].水利学报,2003,34(10):44-50. 被引量:8
  • 6PANG L, HUNT B. Solutions and verification of a scale-dependent dispersion model[J]. Journal of Coma- minant Hydrology, 2001, 53: 21-39.
  • 7HUANG K, VAN GENUCHTEN M T, ZHANG R. Exact solutions for one-dimensional transport with asy- mptotic scale-dependent dispersion[J]. Applied Mathe- matical Modeling, 1996, 20(4): 298-308.
  • 8高光耀,冯绍元,霍再林,詹红兵,黄冠华.考虑弥散尺度效应的溶质径向运移动力学模型及半解析解[J].水动力学研究与进展(A辑),2009,24(2):156-163. 被引量:9
  • 9GAO C~ ZHAN H, FENG S, et al. A mobile-immobile model with an asymptotic scale- dependent dispersion function[J]. Journal of Hydrology, 2012, 424/425: 172- 183.
  • 10DE HOOG F R, KNIGHT J H, STOKES A N. An im- proved method for numerical inversion of Lap-lace transforms[J]. SIAM Journal on Scientific and Statisti- cal Computing, 1982, 3(3): 357-366.

二级参考文献28

  • 1史海滨,陈亚新.饱和-非饱和流溶质传输的数学模型与数值方法评价[J].水利学报,1993,25(8):49-55. 被引量:14
  • 2任理.地下水溶质径向弥散问题的混合拉普拉斯变换有限单元解[J].水动力学研究与进展(A辑),1994,9(1):37-43. 被引量:8
  • 3王竹溪 郭守仁.特殊函数概论[M].科学出版社,1979.383.
  • 4TANG D H,BABU D K.Analytical solution of a velocity dependent dispersion problem[J].Water Resources Research,1979,15(6):1471-1478.
  • 5CHEN S C.Analytical solutions for radial dispersion with Cauchy boundary at injection well[J].Water Resources Research,1987,23(7):1217-1224.
  • 6张效先.不动水体存在时求解径向弥散问题的一种有限单位法及其应用.水利学报,1988,(1):40-46.
  • 7GELHAR L W,WELTY C,REHFELDT K R.A critical review of data on filed-scale dispersion in aquifers[J].Water Resources Research,1992,28(7):1955-1974.
  • 8SCHULZE-MAKUCH D.Longitudinal dispersivity data and implications for scaling behavior[J].Ground Water,2005,43(3):443-456.
  • 9PICKENS J F,GRISAK G E.Scale-dependent dispersion in a stratified granular aquifer[J].Water Resources Research,1981,17(4):1191-1211.
  • 10KIM D J,KIM J S,YUN S T,et al.Determination of longitudinal dispersivity in an unconfined sandy aquifer[J].Hydrological Processes,2002,16:1955-1964.

共引文献13

同被引文献14

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部