期刊文献+

Stability of a delayed predator prey model in a random environment 被引量:1

Stability of a delayed predator prey model in a random environment
下载PDF
导出
摘要 The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the first-order moment is identical to that of the deterministic delayed system, and the delay-independent stable condition of the second-order moment depends on the noise intensities. The corresponding critical time delays are determined once the stabilities of moments lose. Further, when the time delays are greater than the critical time delays, the system solution becomes unstable with the increase of noise intensities. Finally, some numerical simulations are given to verify the theoretical results. The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the first-order moment is identical to that of the deterministic delayed system, and the delay-independent stable condition of the second-order moment depends on the noise intensities. The corresponding critical time delays are determined once the stabilities of moments lose. Further, when the time delays are greater than the critical time delays, the system solution becomes unstable with the increase of noise intensities. Finally, some numerical simulations are given to verify the theoretical results.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期140-145,共6页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.11272051 and 11302172)
关键词 delay-independent stability predator-prey model moment equations environmental noise delay-independent stability, predator-prey model, moment equations, environmental noise
  • 相关文献

参考文献26

  • 1Mohammed S E A 1984 Stochastic Functional Differential Equations (Boston: Pitman).
  • 2Longtin A, Milton J G, Bos J E and Mackey M C 1990 Phys. Rev. A 41 6992.
  • 3Wang C J, Yang K L and Qu S X 2014 Chin. Phys. B 31 80502.
  • 4Sun J Q 2012 Probab. Eng. Mech. 29 1.
  • 5Jin Y F and Hu H Y 2007 NonlinearDyn. 50 213.
  • 6Liu M and Bai C Z 2014Appl. Math. Comput. 228 563.
  • 7Liu Z H and Zhu W Q 2008 J. Sound. Vib. 315 301.
  • 8Zeng C H, Wang H, Yang T, Han Q L, Zhang C and Tian D 2014 Eur. Phys, J. B 87 137.
  • 9Yang T, Zhang C, Han Q L, Zeng C H, Wang H, Tian Dand Long F 2014 Eur. Phys. J. B 87 136.
  • 10Zeng C H, Han Q L and Yang T 2013 J. Stat. Mech. Theor. Exp. P10017.

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部