期刊文献+

一致图存在的独立数条件

A Independent Number Condition for the Existence of k-uniform Graphs
原文传递
导出
摘要 设图G的顶点集为V(G),k≥4是一个正整数.图G的k-因子是图G的一个支撑子图F使得对于图G的每一个顶点x∈V(G)都有dF(x)=k.一个图G称作是一个k-一致图如果对于图G的每一条边e∈E(G),都有一个k-因子包含它同时存在另一个k-因子不包含它.本文中我们得到如下结果,设G是一个2-连通的无爪图,k〉4是一个正整数使得k|V(G)|是偶数,如果δ(G)≥k+2并且图的独立数α(G)〈(2k(δ-k-2))/((k+1)^2),则G是一个k-一致图. Let G =(V,E) be a graph with vertex set V(G) and edge set E(G),k≥4 be an integer.A k-factor of G is a spanning subgraph F of G such that for every x ∈ V(G)satisfying d_F(x) = k.A graph G is called a k-uniform graph if for every e ∈ E(G),there is a k-factor including it while there is another k-factor excluding it.In this paper we obtain the following result,let G be a 2-connected claw-free graph,k ≥ 4 be an integer such that k|V(G)| is even.If δ(G) ≥ k + 2 and α(G) (2k(δ-k-2))/(k+1)^2,then G is a k-uniform graph.This result improve the previous related results.
出处 《应用数学学报》 CSCD 北大核心 2015年第5期769-774,共6页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11571258) 山东省自然科学(ZR2013AM001,ZR2013AL016)资助项目
关键词 简单图 因子 一致图 独立数 无爪图 simple graph factor uniform graph independent number claw-free graph
  • 相关文献

参考文献8

  • 1Bondy J., Murty U. Graph Theory with Applications. Macmillan, London 1976.
  • 2Cai J., Ge L.. Some results on (g,f)-unoform graphs. Utilitas Mathematica, 2012, 89:203 210.
  • 3Chv~tal V., ErdSs P. A note on Hamiltonian circuits. J. Discrete Mathematics, 1972, 2(2): 111-113.
  • 4Kouider M., Lonc Z. Stability Number and [a,b]-factors in Graphs. Y. Graph Theory, 2004, 4(2): 254-264.
  • 5Liu G. (g,f)-factors and factorizations in graphs. Acta Math. Sinica, 1994, 37(3): 230 237.
  • 6Nishimura T. Independence number, connectivity, and r,factors. J. Graph Theory, 1989, 13(1): 63-69.
  • 7Tutte W. The factor of graphs. Can. T. Math., 1952, 4(2): 314-328.
  • 8Liu G., Liu Y. On (g,f)-uniform graphs. Acta Math. Appl. Sinica (English Series), 2005, 21(1): 57-76.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部