摘要
设图G的顶点集为V(G),k≥4是一个正整数.图G的k-因子是图G的一个支撑子图F使得对于图G的每一个顶点x∈V(G)都有dF(x)=k.一个图G称作是一个k-一致图如果对于图G的每一条边e∈E(G),都有一个k-因子包含它同时存在另一个k-因子不包含它.本文中我们得到如下结果,设G是一个2-连通的无爪图,k〉4是一个正整数使得k|V(G)|是偶数,如果δ(G)≥k+2并且图的独立数α(G)〈(2k(δ-k-2))/((k+1)^2),则G是一个k-一致图.
Let G =(V,E) be a graph with vertex set V(G) and edge set E(G),k≥4 be an integer.A k-factor of G is a spanning subgraph F of G such that for every x ∈ V(G)satisfying d_F(x) = k.A graph G is called a k-uniform graph if for every e ∈ E(G),there is a k-factor including it while there is another k-factor excluding it.In this paper we obtain the following result,let G be a 2-connected claw-free graph,k ≥ 4 be an integer such that k|V(G)| is even.If δ(G) ≥ k + 2 and α(G) (2k(δ-k-2))/(k+1)^2,then G is a k-uniform graph.This result improve the previous related results.
出处
《应用数学学报》
CSCD
北大核心
2015年第5期769-774,共6页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(11571258)
山东省自然科学(ZR2013AM001,ZR2013AL016)资助项目
关键词
简单图
因子
一致图
独立数
无爪图
simple graph
factor
uniform graph
independent number
claw-free graph