期刊文献+

一维p-Laplace方程前两个特征值的比值问题

Problems of Eigenvalue Ratios for One-dimensional p-Laplace Equations
原文传递
导出
摘要 本文研究了一维p-Laplace问题■的前两个特征值的比值,其中ρ(x)是满足不等式1≤ρ(x)≤H的分段连续函数,找到了使比值λ_2/λ_1取得最小值的密度函数ρ_0(x).此外我们研究了比值λ_2/λ_1关于分段函数ρ(x) ={H,x∈[0.a] 1,x∈(a,1]的间断点a的变化情况. The ratio of the two eigenvalues of one-dimensional p-Laplace problem {-(|u′(x)|^p-2u′(x)′=(p-1)λρ(x)|u(x)|^p-2u(x) u(0)=u(1)=0 is investigated,where ρ(x) is piecewise continuous and satisfying the inequality 1≤ρ(x)≤H,the extremizing density which provide the min value for the ratio(λ2)/(λ1) is found.And giving the 1-step density ρ(x) ={H,x∈[0.a] 1,x∈(a,1] we are concerned with the changing of the ratio(λ2)/(λ) with respect to the jump a.
作者 李春红
机构地区 天津大学理学院
出处 《应用数学学报》 CSCD 北大核心 2015年第5期806-815,共10页 Acta Mathematicae Applicatae Sinica
关键词 一维P-LAPLACE方程 特征函数 特征值的比 one-dimensional p-Laplace equation eigenfunction ratio of eigenvalues
  • 相关文献

参考文献11

  • 1Ashbaugh M, Benguria R. Eigenvalue ratios for Sturm-Liouville operator. J. Differential Equations, 1993, 103(1): 205-219.
  • 2Huartg M J. On the eigenvatue ratio for vibrating strings. Proc. Amer. Math. Soc., 1999, 1_27(6): 1805-1813.
  • 3Horvath M. On the first two eigenvalues of Sturm-Liouville operators. Proe. Amer. Math. Soc., 2002, 131(4): 1215 1224.
  • 4Keller J B. The minimum ratio of two eigenvalues. SIAM J. Appl. Math., 1976, 31(3): 485-491.
  • 5Mahar T, Willner B. An extremal eigenvalue problem. Comm. Pure Appl. Math., 1976, 29(5): 517-529.
  • 6Fleckinger J, Evans M. Harrell II, Th@lin F. On the fundamental eigenvalue ratio of the p-Laplacian. Bull. Sci. math., 2007, 131(7): 613 619.
  • 7Bogngr G, Do~l~ O. the ratio of eigenvalues of the dirichlet eigenvalue problem for equations with one-dimensional p-Laplacian. Abstr. Appl. Anal., 2010, 2010:1-12.
  • 8Cheng Y H, Lian W C, Wang W C. The dual eigenvalue problems for p~Laplacian. Acta Math. Hungar., 2014, 142(1): 132-151.
  • 9Elbert -~. A half-linear second order differential equations. Coll. Math. Soc. J. Bolyai, 30, 1981, 153-180.
  • 10Binding P A, Dr~bek P. Sturm-Liouville theory for the p-Laplacian. Studia Sci. Math. Hungar., 2003, 40(4): 375-396.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部