摘要
本文研究了一维p-Laplace问题■的前两个特征值的比值,其中ρ(x)是满足不等式1≤ρ(x)≤H的分段连续函数,找到了使比值λ_2/λ_1取得最小值的密度函数ρ_0(x).此外我们研究了比值λ_2/λ_1关于分段函数ρ(x) ={H,x∈[0.a] 1,x∈(a,1]的间断点a的变化情况.
The ratio of the two eigenvalues of one-dimensional p-Laplace problem {-(|u′(x)|^p-2u′(x)′=(p-1)λρ(x)|u(x)|^p-2u(x) u(0)=u(1)=0 is investigated,where ρ(x) is piecewise continuous and satisfying the inequality 1≤ρ(x)≤H,the extremizing density which provide the min value for the ratio(λ2)/(λ1) is found.And giving the 1-step density ρ(x) ={H,x∈[0.a] 1,x∈(a,1] we are concerned with the changing of the ratio(λ2)/(λ) with respect to the jump a.
出处
《应用数学学报》
CSCD
北大核心
2015年第5期806-815,共10页
Acta Mathematicae Applicatae Sinica