期刊文献+

符号动力系统的扩充系统的分布混沌性

Distributional Chaos for The Extended System of Symbolic Dynamical System
原文传递
导出
摘要 设(∑,σ)是两个符号的单边符号动力系统,(X,f)是紧致系统.如果存在连续满射h:X→∑,使得hof=σoh,则称(X,f)是(∑,σ)的扩充系统.本文研究(∑,σ)的扩充系统(X,f)的分布混沌性,通过在(∑,σ)中构造合适的符号序列,在扩充系统(X,f)中构造出了一个不可数的分布混沌集.证明了:若彐x∈∑,使得#h^(-1)(x)=1,则f是分布混沌的. Let(Σ,σ) be the one-sided symbolic dynamical system which has two symbols A compact system(X,f) is called an extended system of(Σ,σ) if there exists a continuous map h of X onto the symbolic space E such that h o f = σ o h.In this paper,we study the distributionally chaotic behaviour of the extended system(X,f).First,we construct special symbolic sequences in(Σ,σ),then using these symbolic sequences and the topological semiconjugacy between(Σ,σ) and(X,f),we construct a uncountable distributionally chaotic set in the extended system(X,f).It is proved that if there is a point x of Σ which preimage of h is a single point,then the extended system(X,f)is distributionally chaotic.
出处 《应用数学学报》 CSCD 北大核心 2015年第5期845-853,共9页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11261008) 广西高校科学技术研究(2013YB038)资助项目
关键词 符号动力系统 扩充系统 分布混沌 symbolic dynamical system extended system distributional chaos
  • 相关文献

参考文献11

二级参考文献35

  • 1周作领,何伟弘.轨道结构的层次与拓扑半共轭[J].中国科学(A辑),1995,25(5):457-464. 被引量:17
  • 2XIONG Jingcheng, YANG Zhongguo. Chaos caused by a topologically mixing map, Indynamical Systems and Related Topics [M]. Singapore : World Scientific Press, 1992.
  • 3WANG Lidong, CHEN Zhizhi, LIAO Gongfu. The complexity of a minimal sub - shift on symbolic spaces[J]. Mathematical Analysis and Applications, 2006,317:136-145.
  • 4LI Shihai, W- Chaos and topological entropy[J]. Transactions of the American Mathematical Society, 1993, 339:243 - 249.
  • 5Li T Y,Yorke J A.Period Three Implies Chaos[J].Amer Math Monthly,1975,82(10):985-992.
  • 6Schweizer B,Smital J.Measure of Chaos and a Spectral Decomposition of Dynamical Systems of Interval[J].TransAmer Math Soc,1994,344(2):737-754.
  • 7Guirao J L G,Lampart M.Relations between Distributional,Li-Yorke andω-Chaos[J].Chaos,Solitons and Fractals,2006,28(3):788-792.
  • 8WANG Li-dong,HUANG Gui-feng,HUAN Song-mei.Distributional Chaos in a Sequence[J].Nonlinear Analysis:Theory,Methods and Applications,2007,67(7):2131-2136.
  • 9Oprocha P,Wilczynski P.Distributional Chaos via Semiconjugacy[J].Nonlinearity,2007,20(1):2661-2679.
  • 10LIAO Gong-fu,WANG Li-dong,DUAN Xiao-dong.A Chaotic Function with a Distributively Scrambled Set of FullLebesgue Measure[J].Nonlinear Analysis:Theory,Methods and Applications,2007,66(10):2274-2280.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部