摘要
设(∑,σ)是两个符号的单边符号动力系统,(X,f)是紧致系统.如果存在连续满射h:X→∑,使得hof=σoh,则称(X,f)是(∑,σ)的扩充系统.本文研究(∑,σ)的扩充系统(X,f)的分布混沌性,通过在(∑,σ)中构造合适的符号序列,在扩充系统(X,f)中构造出了一个不可数的分布混沌集.证明了:若彐x∈∑,使得#h^(-1)(x)=1,则f是分布混沌的.
Let(Σ,σ) be the one-sided symbolic dynamical system which has two symbols A compact system(X,f) is called an extended system of(Σ,σ) if there exists a continuous map h of X onto the symbolic space E such that h o f = σ o h.In this paper,we study the distributionally chaotic behaviour of the extended system(X,f).First,we construct special symbolic sequences in(Σ,σ),then using these symbolic sequences and the topological semiconjugacy between(Σ,σ) and(X,f),we construct a uncountable distributionally chaotic set in the extended system(X,f).It is proved that if there is a point x of Σ which preimage of h is a single point,then the extended system(X,f)is distributionally chaotic.
出处
《应用数学学报》
CSCD
北大核心
2015年第5期845-853,共9页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(11261008)
广西高校科学技术研究(2013YB038)资助项目
关键词
符号动力系统
扩充系统
分布混沌
symbolic dynamical system
extended system
distributional chaos