期刊文献+

Lvy过程驱动的倒向随机微分方程生成元的表示定理

A Representation Theorem for Generators of BSDEs Driven By A Lvy Process
原文传递
导出
摘要 本文在适当的假设之下,建立了由一种Levy过程驱动的倒向随机微分方程生成元的表示定理,应用此表示定理,我们获得了此类倒向随机微分方程的逆比较定理. In this paper,a representation theorem for generators of backward stochastic differential equations(BSDEs for short) driven by a Levy process with moments of all orders is established,under some suitable conditions.As an application of this representation theorem,a converse comparison theorem of this kinds of BSDEs is obtained.
出处 《应用数学学报》 CSCD 北大核心 2015年第5期892-900,共9页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11171010) 北京市自然科学基金(1132008)资助项目
关键词 倒向随机微分方程 生成元的表示定理 逆比较定理 LEVY过程 backward stochastic differential equation Levy process representation theorem converse comparison theorem
  • 相关文献

参考文献12

  • 1Bahlali K, Eddahbi M, Essaky E. BSDE associated with L~vy processes and application to PDIE. International Journal of Stochastic Analysis, 16(1): 1-17 (2003).
  • 2Barles G, Buckdahn R, Pardoux E. Backward stochastic differential equations and integral-partial differential equations. Stochastics Stochastics Rep., 60(1-2): 57-83 (1997).
  • 3Briand P, Coquet F, Hu Y, M@min J, Peng S. A converse comparison theorem for BSDEs and related properties of g-expectation. Electron. Comm. Probab., 5:101-117 (2000).
  • 4Fan S J, Jiang L. A representation theorem for generators of BSDEs with continuous linear-growth generators in the space of processes. Journal of Computational and Applied Mathematics, 235(3): 686495 (2010).
  • 5Fan S J, Jiang L, Xu Y. Representation theorem for generators of BSDEs with monotonic and polynomial-growth generators in the space of processes. Electronic Journal of Probability, 16(27): 830-834 (2011).
  • 6Jia G. Backward Stochastic Differential Equations, g-expectations and Related Semilinear PDEs. PH. D Thesis, Shandong University, China, 2008.
  • 7Jiang L. Nonlinear Expectation, g-expectation, Theory and Its Applications in Finance. Ph. D. Thesis, Shandong University, China, 2005.
  • 8Liu Y, Jiang L, Xu Y. A local limit theorem for solutions of BSDEs with Mao' non-Lipschitz generator. Aeta Mathematieae Applicatae Sinica (English Series), 24:329-336 (2008).
  • 9Nualart D, Schoutens W. Backward stochastic differential equations and Feynman-Kac formula for L@vy processes, with applications in finance. Bernoulli, 7(5): 761-776 (2001).
  • 10Nualart D, Schoutens W. Chaotic and predictable representations for L6vy processes. Stochastic Process. Appl., 90 (1): 109 122 (2000).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部