期刊文献+

集值优化问题广义拟近似解的性质与存在性定理

The Properties and Existence Theory for Generalized Quasi-Approximate Solutions to Set-Valued Optimization Problems
原文传递
导出
摘要 本文引进了集值优化问题的一种广义拟近似解,试图统一文中提到的其它集值优化问题的近似解.研究了广义拟近似解的一些性质,获得了广义拟近似有效解的存在性定理. In this paper,we introduce a new concept of generalized quasi-approximate,solution for set-valued optimization problems,intend to unify the other approximate solutions mentioned in this paper.Further,we study some properties of generalized quasi-approximate solution and obtain the existence theory for generalized quasi-approximate efficient solution.
出处 《应用数学学报》 CSCD 北大核心 2015年第5期929-943,共15页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11471291 11201379)资助项目
关键词 集值优化 广义拟近似解 存在性定理 set-valued optimization generalized quasi-approximate solution existence theorem
  • 相关文献

参考文献15

  • 1Kutateladze S S. Convex ~-programing. Soy. Math. Dokl., 1979, 20(2): 391-393.
  • 2Loridan P. C-solution in vector minimization problem. J. Optim. Theory Appl., 1984, 43(2): 265-272.
  • 3White D J. Epsilon efficiency. J. Optim. Theory Appl., 1986, 49(2): 319-337.
  • 4Tanaka T A. New Approach to Approximation of Solutions in Vector Optimization Problems. In: Fushimi M and Tone K (eds). Proceedings of APORS. Singapore: World Scientific, 1995, 497-504.
  • 5Yokoyama K. Epsilon approximate solutions for multiobjective programming problems. J. Math. Anal. Appl., 1996, 203(1): 142-149.
  • 6Guti@rrez C, Jim~nez B, Novo V. A unified approach and optimality conditions for approximate solutions of vector optimization problems. SIAM J. Optim., 2006, 17(3): 688-710.
  • 7Gupta D, Mehra A. Two types of approximate saddle points. Numer. Func~. Anal. Op~im., 2008, 29(5-6): 532-550.
  • 8Guti~rrez C, L6pez V, Novo V. Generalized e-quasi-solutions in multiobjective optimization problems: existence results and optimality conditions. Nonlinear Anal., 2010, 72(11): 4331 4346.
  • 9Gao Y, Hou S H, Yang X M. Existence and optimality conditions for approximate solutions to vector optimization problems. J. Optim. Theory Appl., 2012, 152(1): 97-120.
  • 10Chen G Y, Huang X X. Ekeland's e-variational principle for set-valued mappings. Math. Method Oper. Res., 1998, 48(2): 181-186.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部