期刊文献+

基于弱监督ECOC算法的肺结节辅助检测 被引量:3

Pulmonary Nodule Aided Detection Based on Weakly-Supervised ECOC Algorithm
下载PDF
导出
摘要 肺结节的准确分类与识别是计算机辅助诊断系统在肺癌诊断领域应用的关键,同时也面临巨大的挑战。该技术不仅在特征表示、样本标记等方面存在发展的瓶颈,而且目前缺少准确、有效的分类识别算法。本文提出了一种结合弱监督纠错输出编码(Error-correcting output codes,ECOC)算法和肺结节形状特征表达的肺结节多分类算法。为了提高分类识别的准确率,本文对肺结节的形状特征进行了详细的分析,并提出了一系列准确的形状特征描述向量。在分类识别阶段,算法训练学习了利用专家对肺结节标记信息标记的少量样本,并生成二类分类器,获得编码矩阵。最后,通过计算测试样本编码和编码矩阵每一行的汉明距离,确定样本所属类别。实验结果表明,本文方法能够获得更加准确的分类结果。 Accurate classification and recognition of pulmonary nodules are key process of lung cancer computeraided diagnosis(CAD)system.Meanwhile,there are still some scientific and technical challenges,including the difficulty of the feature representation and samples labeled,and the lack of accurate and effective recognition and classification algorithms.A multi-classification algorithm is presented combining weakly-supervised ECOC algorithm with pulmonary nodules features expression of shape.In order to improve the classification accuracy,we select a series of accurate shape feature description vectors by deliberating the shape features of pulmonary nodules.During the training phase,the coded matrix is constructed by a series of binary classifiers,which are generated by a small amount of labeled pulmonary nodules from experts.Finally,the Humming distance between the code of testing sample and each row of the coded matrix are calculated to determine the category of the testing sample.Experimental results show that the proposed method can obtain more accurate classification results.
出处 《数据采集与处理》 CSCD 北大核心 2015年第5期1003-1010,共8页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61272245)资助项目 山东省科技发展计划(2014GGX101037)资助项目 济南市高校自主创新计划(201401216)资助项目
关键词 肺结节 分类识别 弱监督 纠错输出编码 肺部图像数据库联盟 pulmonary nodule classification and recognition weakly-supervised learning error-correc-tion output codes lung image database consortium
  • 相关文献

参考文献16

  • 1Siegel R, Ma J M, Zou Z H, et al. Cancer statistics [J]. A Cancer Journal for Clinicians, 2014, 64(1) : 9-29.
  • 2Ayman E B, Garth M B, Georgy G, et al. Computer-aided diagnosis systems for lung cancer: Challenges and methodologies[J]. International Journal of Biomedical Imaging, 2013: 942353.
  • 3Zaidi N A, Squire D M. Local adaptive SVM for object recognition [C] //Digital image eomputing: Techniques and Application (DICTA), 2010 International Conference on. Sydney, Australia: IEEE, 2010:196-201.
  • 4Tanchotsrinon C, Phimoltares S, Maneeroj S. Facial expression recognition using graph-base features and artificial neural networks [C] // Imaging Systems and Techniques (IST), 2011 IEEE International Conference on. Penang, Malaysia: IEEE, 2011:331-334.
  • 5Anthony G, Gregg H, Tshilidzi M. Image classifieation using SVMs: One-against-one vs one-against-all [C] //Proceeding of the 28th Asian Conference on Remote Sensing. Kuala Lumpur, Malaysia: IEEE, 2007 : 12-16.
  • 6Hong J H, Cho S B. Aprobabilistic multi-class strategy of one-vs-rest support vector machines for cancer classification [C]. // Advances in Neural Information Processing (ICONIP 2006). Brazilian: Neurocomputing, 2008: 3275-3281.
  • 7Dietteriehand T G, Bakiri G. Solving multielass learning problems via error-correcting output codes [J]. Journal of Artificial Intelligence Research, 1995, 2:263-286.
  • 8Alpaydin E, Mayoraz E. Learning error-correcting output codes form data [C] //Proceeding of the 9th Internet Conference on Artificial Neural Networks. Edinburgh, UK: IET, 1999:743-748.
  • 9Utschick W, Weichselberger W. Stochastic organization of output codes in multiclass learning problems [J]. Neural Compute, 2001, 13(5) : 1065-1102.
  • 10Zhang M L. Disambiguation-free partial label learning [C] //Proceeding of the 14th SIAM International Conference on Data Mining(SDM14). Philadelphia, PA: [s. n. ], 2014:37-45.

二级参考文献21

  • 1Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data[J]. Journal of Bioinformatics and Computational Biology, 2005, 3(02):185-205.
  • 2Yang Y, Pedersen J O. A comparative study on feature selection in text categorization[C] // ICML. [S. 1]: Morgan Kauf- mann Publishers, 1997: 412-420.
  • 3Blum A, Mitchell T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the Eleventh Annual Con- ference on Computational Learning Theory. [S. 1. ]: ACM, 1998: 92-100.
  • 4Heckmann M, Berthommier F, Kroschel K. Noise adaptive stream weighting in audio-visual speech recognition[J]. EUR- ASIP Journal on Applied Signal Processing, 2002, 2002(1) : 1260-1273.
  • 5La Cascia M, Sethi S, Sclaroff S. Combining textual and visual cues for content-based image retrieval on the world wide web [C]//Content-Based Access of Image and Video Libraries. [S. 1. ]: IEEE, 1998: 24-28.
  • 6Wu Y, Chang E Y, Chang K C C, et ai. Optimal multimodal fusion for multimedia data analysis[C]//Proceedings of the 12th Annual ACM International Conference on Multimedia. [S. 1]: ACM, 2004: 572-579.
  • 7Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2005, 27(8): 1226-1238.
  • 8He X, Cai D, Niyogi P. Laplacian score for feature selection[C]//Advances in Neural Information Processing Systems 18. [S.1]: MIT Press, 2005: 507-514.
  • 9Zhao Z, Liu H. Spectral feature selection for supervised and unsupervised learning[C]//Proceedings of the 24th international conference on Machine learning. [S. 1. ] : ACM, 2007 : 1151-1157.
  • 10Cai D, Zhang C, He X. Unsupervised feature selection for multi-cluster data[C]//Proceedings of the 16th ACM SIGKDD In- ternational Conference on Knowledge Discovery and Data Mining. [S. 1. ] :ACM, 2010: 333-342.

共引文献7

同被引文献116

  • 1Stewart B W,Wild C P.World cancer report 2014[M].Lyons:International Agency for Research on Cancer Nonsertal Pub-lication,2014.
  • 2Lee S T,Kouzani A Z,Hu E,et al.Automated detection of lung nodules in computed tomography images:A review[J].Journal of Machine Vision and Applications,2012,23(1):151-163.
  • 3Valente I R S,Cortez P C,Neto E C,et al.Automatic 3Dpulmonary nodule detection in CT images:A survey[J].Com-puter Methods and Programs in Biomedicine,2016,124(1):91-107.
  • 4Shen S,Bui A A T,Cong J,et al.An automated lung segmentation approach using bidirectional chain codes to improve nod-ule detection accuracy[J].Computers in Biology and Medicine,2015,57(1):139-149.
  • 5Brader P,Abramson S J,Price A P,et al.Do characteristics of pulmonary nodules on computed tomography in children withknown osteosarcoma help distinguish whether the nodules are malignant or benign?[J].Journal of Pediatric Surgery,2011,46(4):729-735.
  • 6Arai K,Herdiyeni Y,Okumura H.Comparison of 2Dand 3Dlocal binary pattern in lung cancer diagnosis[J].InternationalJournal of Advanced Computer Science and Applications,2012,3(4):89-95.
  • 7Cohen J G,Reymond E,Lederlin M,et al.Differentiating pre-and minimally invasive from invasive adenocarcinoma usingCT-features in persistent pulmonary part-solid nodules in Caucasian patients[J].European Journal of Radiology,2015,84(4):738-744.
  • 8Kaya A,Can A B.A weighted rule based method for predicting malignancy of pulmonary nodules by nodule characteristics[J].Journal of Biomedical Informatics,2015,56(1):69-79.
  • 9Han F F,Wang H F,Zhang G P.Texture feature analysis for computer-aided diagnosis on pulmonary nodules[J].Journalof Digital Imaging,2015,28(1):99-115.
  • 10Hu S H,Hoffinan E A,Reinhardt J M.Automatic lung segmentation for accurate quantitation of volumetric x-ray CT ima-ges[J].IEEE Transactions on Medical Imaging,2001,20(6):490-498.

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部