摘要
When sun plants, such as Arabidopsis thaliana, are under canopy shade, elongation of stems/petioles will be induced as one of the most prominent responses. Plant hormones mediate the elongation growth. However, how environmental and hormonal signals are translated into cell expansion activity that leads to the elongation growth remains elusive. Through forward genetic study, we identi-fied shade avoidance2 (sav2) mutant, which contains a P287L mutation in b-TUBULIN 4. Cortical microtubules (cMTs) play a key role in anisotropic cell growth. Hypocotyls of sav2 are wild type-like in white light, but are short and highly swollen in shade and dark. We showed that shade not only induces cMT rearrangement, but also affects cMT stability and dynamics of plus ends. Even though auxin and brassinosteroids are required for shade-induced hypocotyl elongation, they had little effect on shade-induced rearrangement of cMTs. Blocking auxin transport suppressed dark phenotypes of sav2, while overexpressing EB1b-GFP, a microtubule plus-end binding protein, rescued sav2 in both shade and dark, suggesting that tub4P287L represents a unique type of tubulin mutation that does not affect cMT function in supporting cell elongation, but may affect the ability of cMTs to respond properly to growth promoting stimuli.
When sun plants, such as Arabidopsis thaliana, are under canopy shade, elongation of stems/petioles will be induced as one of the most prominent responses. Plant hormones mediate the elongation growth. However, how environmental and hormonal signals are translated into cell expansion activity that leads to the elongation growth remains elusive. Through forward genetic study, we identi-fied shade avoidance2 (sav2) mutant, which contains a P287L mutation in b-TUBULIN 4. Cortical microtubules (cMTs) play a key role in anisotropic cell growth. Hypocotyls of sav2 are wild type-like in white light, but are short and highly swollen in shade and dark. We showed that shade not only induces cMT rearrangement, but also affects cMT stability and dynamics of plus ends. Even though auxin and brassinosteroids are required for shade-induced hypocotyl elongation, they had little effect on shade-induced rearrangement of cMTs. Blocking auxin transport suppressed dark phenotypes of sav2, while overexpressing EB1b-GFP, a microtubule plus-end binding protein, rescued sav2 in both shade and dark, suggesting that tub4P287L represents a unique type of tubulin mutation that does not affect cMT function in supporting cell elongation, but may affect the ability of cMTs to respond properly to growth promoting stimuli.
基金
supported by the National Institutes of Health, 5 RO1GM52413 to J.C.
the Howard Hughes Medical Institut
funded by theScience and Technology Program of Fujian Province, 2008F3102 to Y.T.
the National Natural Science Foundation of China, 30870210, 90917013 to Y.T
Fundamental Research Funds for the Central Universities 2010121090 to Y.T
supported by 111 Project B12001