期刊文献+

收敛性随机森林模型及其遥感应用 被引量:2

Convergent Random Forests Model and Its Application in Remote Sensing
原文传递
导出
摘要 通过引入全局损失函数,提出了一种全局优化的随机森林模型算法,称为θ-β型随机森林,并且利用改进后的模型对城市遥感图进行了检测与识别,识别准确率与识别速率都得到了一定的提高.方法在经典随机森林模型的基础上加入前向反馈模型(Forward Stagewise Additive Model),通过每一层节点的训练结果干预下一层的训练数据(从而改变阈值θ的选择)与训练步长(β),使得最后训练得到的型随机森林收敛速度更快,预测结果更为准确. A improved Random Forests called θ-β Random Forests(θ-β RFs) is proposed in this paper.And the detection and identification of the remote sensing images of cities are done using θ-β RFs.The accuracy and speed rate of the experiment result is proved to be better.This model combines RFs with Forward Stagewise Additive Model,alternating the results of the next nodes by the results of the current nodes.θ-β RFs has a greater convergence rate and more accurate results.
出处 《数学的实践与认识》 北大核心 2015年第18期207-212,共6页 Mathematics in Practice and Theory
基金 教育部人文社科基金项目(12YJAZH022) 湖北省统计科研计划重点项目(HB131-25) 湖北省商务厅科研项目(HBSW-2014-01)
关键词 随机森林 反馈式优化 遥感图像 决策分类 random forests forward stagewise additive model remote sensing image decision and classification
  • 相关文献

参考文献8

  • 1Criminisi A,Shotton J,Konukoglu E.Decision Forests:A unified framework for classification,regression,density estimation,manifold learning and semi-supervised learning[J].Foundations and Trends in Computer Graphics and Computer Vision,2012,7(2):81-227.
  • 2Biau G,Devroye L,and Lugosi G.Consistency of random forests and other averaging classifiers[J].JMLR,2008,9(9):2015-2033.
  • 3Friedman J H.Greedy function approximation:A gradient boosting machine[J].The Annals of Statistics,2001,29(5):1189-1232.
  • 4Han J W,Kamber M.数据挖掘概念与技术[M].范明,孟小峰译.第二版.北京:机械工业出版社,2001.
  • 5El-Manzalawy Y,Dobbs D,Honavar V.Predicting protective bacterial antigens using random forest classifiers[C]//In Proceedings of the ACM International Conference on Bioinformatics,Computational Biology and Biomedicine.Orlando:Association for Computing Machinery,2012:426-433.
  • 6Salhi A I,Kardouchi M,Belacel N.Fast and efficient face recognition system using random forest and histograms of oriented gradients[C]//In Proceedings of Biometrics Special Interest Group Darmstadt:Institute for Electrical and Electronic Engineers,2012:1-11.
  • 7RichardJRoiger.Dataminingtutorial-basedprimer[M].北京:清华大学出版社,2005.
  • 8Matas J,Chum O,Urban M,et al.Robust wide-baseline stereo from maximally stable extremal regions[J].Image and Vision Computing,2004,22(10):761-767.

同被引文献22

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部