摘要
通过引入全局损失函数,提出了一种全局优化的随机森林模型算法,称为θ-β型随机森林,并且利用改进后的模型对城市遥感图进行了检测与识别,识别准确率与识别速率都得到了一定的提高.方法在经典随机森林模型的基础上加入前向反馈模型(Forward Stagewise Additive Model),通过每一层节点的训练结果干预下一层的训练数据(从而改变阈值θ的选择)与训练步长(β),使得最后训练得到的型随机森林收敛速度更快,预测结果更为准确.
A improved Random Forests called θ-β Random Forests(θ-β RFs) is proposed in this paper.And the detection and identification of the remote sensing images of cities are done using θ-β RFs.The accuracy and speed rate of the experiment result is proved to be better.This model combines RFs with Forward Stagewise Additive Model,alternating the results of the next nodes by the results of the current nodes.θ-β RFs has a greater convergence rate and more accurate results.
出处
《数学的实践与认识》
北大核心
2015年第18期207-212,共6页
Mathematics in Practice and Theory
基金
教育部人文社科基金项目(12YJAZH022)
湖北省统计科研计划重点项目(HB131-25)
湖北省商务厅科研项目(HBSW-2014-01)
关键词
随机森林
反馈式优化
遥感图像
决策分类
random forests
forward stagewise additive model
remote sensing image
decision and classification