摘要
研究了一种未血管化肿瘤生长模型的自由边界问题,模型与此类其它模型有着明显的不同,它引入新的运动项来描述肿瘤内细胞的运动,反映了肿瘤内细胞运动的"接触抑制"性质.运用Banach不动点理论和抛物型方程的L^P理论,证明了模型存在唯一整体解.
The author focused on a free boundary problem modelling growth of avascular tumors,this model gave distinct difference from other tumor models in which a new movement term used to show the movement of cells in tumor,and the new term also showed the property of the movement named "contact inhibition".With the fixed point theorem of Banach Space and the L^P theory of parabolic equations the author proved the existence and uniqueness of the global solutions of the problem.
出处
《数学的实践与认识》
北大核心
2015年第19期223-231,共9页
Mathematics in Practice and Theory
基金
山东省自然科学基金(ZR2014AG032)
山东省高等学校科技计划项目(J13LI02)
菏泽学院科研项目(XYJJKJ-3)
关键词
肿瘤生长
未血管化
自由边界问题
整体解
存在唯一
tumour growth
avascular
free boundary problem
Global solution
existence and uniqueness