期刊文献+

严格α-对角占优M-矩阵A的‖A^(-1)‖_∞的上界估计 被引量:15

An Upper Bound of ‖A^(-1)‖_∞ for Strictly α- Diagonally Dominant M-matrices
原文传递
导出
摘要 针对逆矩阵的无穷范数的上界估计问题,利用严格对角占优M-矩阵逆的无穷范数的上界,给出了严格α-对角占优M-矩阵A的||A^(-1)||_∞的单调递减的上界序列,理论证明及数值分析均表明所得估计改进了某些现有结果. A sequence of the upper bound of || A^(-1)||_∞ for a strictly α-diagonally dominant M-matrix A is given by using the upper of the infinity norm of the inverse of a strictly diagonally dominant M-matrix.It is proved that the sequence is monotone decreasing with a lower bound ||A^(-1)||oo and,consequently,the sequence is convergent.The result in this paper improve some existing results.
出处 《数学的实践与认识》 北大核心 2015年第19期280-284,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金(11361074) 贵州省科学技术基金(黔科合J字[2015]2073号) 贵州民族大学引进人才科研基金(15XRY003) 贵州民族大学科研基金(15XJS009)
关键词 严格对角占优 严格α-对角占优 M-矩阵 范数 上界 Strictly diagonally dominant Strictly α-diagonally dominant M-matrix Norm Upper bound
  • 相关文献

参考文献5

二级参考文献10

  • 1Varga R S. Matrix iterative analysis [M]. Berlin: Springer, 2000.
  • 2Varah J M. A lower bound for the smallest singular value of a matrix [J]. Linear Algebra and its Applications, 1975, 11: 3-5.
  • 3Varga R S. On Diagonal Dominance Arguments for Bounding IIA-111o [J]. Linear Algebra and its Applications, 1976, 14: 211-217.
  • 4Shivakumar P N, Williams J J, Ye Q, Marinov C.A. On two-sided bounds related to weakly diago- nally dominant M-matrices with application to digital circuit dynamics [J]. SIAM J. Matrix Anal. Appl., 1996, 17: 298-312.
  • 5Cheng G H, Huang T Z. An upper bound for /A-1 of strictly diagonally dominant M-matrices [J]. Linear Algebra Appl., 2007, 426: 667-673.
  • 6Wang P. An upper bound for A-1 o of strictly diagonally dominant M-matrices [J]. Linear Algebra Appl., 2009, 431: 511-517.
  • 7Huang T Z, Zhu Y. Estimation of IIA-111 for weakly chained diagonally dominant 2l-matrices [J]. Linear Algebra Appl., 2010, 432: 670-677.
  • 8陈付彬,任献花,郝冰.矩阵Hadamard积和Fan积的特征值界的一些新估计式(英文)[J].数学杂志,2014,34(5):895-903. 被引量:11
  • 9李艳艳,蒋建新,李耀堂.严格对角占优M-矩阵A的|A^(-1)|_∞上界估计式的改进[J].云南大学学报(自然科学版),2015,37(1):5-8. 被引量:20
  • 10赵建兴,桑彩丽.非奇异M-矩阵的Hadamard积的最小特征值的估计[J].数学的实践与认识,2015,45(9):242-249. 被引量:8

共引文献10

同被引文献52

  • 1CHENG G H, HUANG T Z. An Upper Bound for || A-1||∞ of Strictly Diagonally Dominant M-Matrices[J]. Linear Alge- bra Appl, 2007, 426(S2/3): 667-673.
  • 2WEN L. The Infinity Norm Bound for the Inverse of Nonsingular Diagonal Dominant Matrices [J]. Applied Mathematics Letters, 2008, 21: 258-263.
  • 3WANG P. An Upper Bound for|| A-1||∞of Strictly Diagonally Dominant M-Matrices [J]. Linear Algebra Appl, 2009, 431: 511-517.
  • 4HUANG T Z, ZHU Y. Estimations of || A-1||∞ for Weakly Chained Diagonally Dominant M-Matrices [J]. Linear Al- gebra Appl, 2010, 432: 670-677.
  • 5WANG F, SUN D S, ZHAO J X. New Upper Bounds for || A-1||∞ of Strictly Diagonally Dominant M-Matrices [J]. Journal of Inequalities and Applications, 2015, 172: 1-8.
  • 6关治,陆金甫.数值方法[M].北京:清华大学出版社,2014:57-62.
  • 7CVETKOVI L. H-Matrix Theory vs Eigenvalue Localization [J]. Numer Algor, 2006, 42: 229-245.
  • 8Cheng G H, Huang T Z.An upper bound for of strictly diagonally dominant matrices[J]. Linear Algebra Appl, 2007, 426: 667-673.
  • 9VARGA R S. Matrix iterative analysis [M]. Berlin: Springer-Verlag? 2000: 10-100.
  • 10CHENG Guanghui, HUANG Tingzhu. An upper bound for || A-1 || co of strictly diagonally dominant M-matrices[J]. Linear Algebra Appl, 2007 , 426(2/3) : 667-673.

引证文献15

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部