期刊文献+

(,z)-矩阵的卡氏积及其性质 被引量:2

Descartes Product of(,z)-separable Matrices and Its Properties
原文传递
导出
摘要 二元叠加码(,z)-析取矩阵是Pooling设计理论的一个极其重要的数学模型,定义了两个已知(,z)-析取矩阵的卡氏积并证明了它的性质,最后,对这一定义进行了推广. The binary superimposed code(d,z)-separable matrix is a extremely important mathematical model of Pooling design theory.Defined Descartes product of the two known(d,z)-disjunct matrices as a new(d,z)- disjunct matrix and proved its Properties.The last,we introduce generalization of this definition.
出处 《数学的实践与认识》 北大核心 2015年第19期301-304,共4页 Mathematics in Practice and Theory
基金 河北省张家口市科技支撑研究项目基金资助(1112025B)
关键词 (d z)-分离矩阵 卡氏积 汉明距离:检错 (d z)-separable matrix Descartes product Hamming distance error detecting
  • 相关文献

参考文献7

  • 1Kautz W H, Singleton R C. Nonrandom binary superimposed codes[J]. IEEE Trans. Inform Theory, 1964, 10: 363-377.
  • 2Du Ding-zhu, Hwang F K. Pooling designs and nonadaptive group testing[M]. Word Scientific Singepore, 2006.
  • 3Chen Hong-Bin, Fu Hung-Lin . Nonadaptive algorithms for threshold group testing[J] Applied Mathematics, 2009, (157): 1581-1585.
  • 4Mahdi Cheraghchi. Improved Constructions for Non-adaptive threshold group testing[J]. mica, 2013, 67:384-417.
  • 5Discrete Algorith- Perter Damaschke, Azam Sheikh Muhammad, G~bor Wiener. Strict group testing and the set basis problem[J]. Journal of Combinatorial Theory Series A, 2014, 126:70-91.
  • 6Dyachkov A G, Macula A J, Villenkin P A. Nonadaptive and trivial two-stage group testing with error-correcting de-disjunct matrices[J]. Springer Berlin Heidelberg, 2007, 16:71-83.
  • 7Du Ding-zhu, Hwang F K. Combinatorial group testing and its applications[M]. Word Scientific, Singepore, 2000.

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部