期刊文献+

水灰比对PVA纤维增强水泥基复合材料性能和显微结构的影响 被引量:19

Effects of water/cement ratio on properties and microstructure of PVA fiber reinforced cementitious composites
原文传递
导出
摘要 对3种不同水灰比(0.2,0.4,0.65)形成的聚乙烯醇(PVA)纤维增强水泥基材料,通过三点弯曲试验,结合表观裂缝形状和裂缝处PVA纤维形态,研究了水灰比对材料弯曲性能的影响;通过对断裂面处纤维表面、纤维嵌入端和纤维拉断或拔出端的SEM影像分析,从微观层面研究了水灰比对PVA纤维-基体界面显微结构的影响。弯曲试验结果表明:随着水灰比增加,跨中部位裂缝数量明显增加,裂缝处拔出的纤维数量增多而拉断的数量减少,材料的弯曲韧度和开裂强度到弯曲强度的增强幅度提高。界面显微结构表明:随着水灰比增加,基体结构由致密变疏松,界面粘结力减弱,桥接裂缝的PVA纤维状态由瞬间猝断转变为滑动拔出且表面有轻微刮削,纤维对材料增强增韧的效率显著提高。 The water/cement ratios of 0.2, 0.4, and 0.65 were selected to form three types of polyvinyl alcohol (PVA) fiber reinforced cementitious composites. Three-point bending test was implemented to evaluate the effects of water/cement ratio on properties based on crack patterns and PVA fibers morphology in cracks; SEM micrographs of PVA fiber side surface, fibers' embedded and ruptured or puUouted ends in fracture surface were investi gated to analyze PVA fiber-matrix interface microstructure at the micro level. Bending test results show that the number of cracks near mid-span site and that of pullouted PVA fibers in cracks increase significantly. Meanwhile, bending toughness value and the rate of improvement from crack strength to bending strength are improved with increasing water/cement ratio. Interface microstructure finds out that matrix structure becomes looser and interface bonding ability becomes lower with increasing water/cement ratio. Meanwhile, the PVA fibers morphology of bridging cracks changes from PVA fiber instant breakage to pullouted and slipped with slight abrasion surface, which significantly improve the rate of fiber reinforced and fiber toughening.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2015年第4期1067-1074,共8页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(11062007)
关键词 PVA纤维水泥基复合材料 水灰比 裂缝 纤维增强 纤维增韧 界面显微结构 polyvinyl alcohol (PVA) fiber reinforced cementitious composites water/cement ratio cracks fiberreinforced fiber toughening interface microstructure
  • 相关文献

参考文献32

  • 1Li V C, On engineered cementitious composites: a review of the material and its applications [J]. Advanced Concrete Technology, 2003, 1(3): 215-230.
  • 2Lin Z, Kanda T, Li V C. On interface property characteriza- tion and performance of fiber-reinforced cementitious compos- ites[J]. Concrete Science and Engineering, 1999, 1 (1): 173-184.
  • 3JCI-DFRCC Committee. DFRCC terminology and application concepts [J]. Advanced Concrete Technology, 2003, 1(3): 335-340.
  • 4Redon C, Li V C, Wu C, et al. Measuring and modifying in- terface properties of PVA fibres in ECC matrix[J]. Materials in Civil Engineering, 2001, 13(6): 399-406.
  • 5Wu H C, Li V C. Fiber/cement interface tailoring with plas- ma treatment[J]. Cement and Concrete Composites, 1999, 21(3) : 205-212.
  • 6Kamile T, Burak F, Biilent B. Multiple cracking response of plasma treated polyethylene fiber reinforced cementitiouscomposites under flexural loading[J]. Cement and Concrete Composites, 2012, 34(4): 508-520.
  • 7Lepech M D, Li V C, Keoleian G A. Sustainable infrastruc- ture material design[C]//Life-cycle Cost Analysis and Design of Civil Infrastructures Systems, 2005: 83-90.
  • 8Yang E H, Li V C. Fiber-bridging constitutive law of engi- neered cementitious composites [J ]. Advanced Concrete Technology, 2008, 6(1): 181-193.
  • 9Li V C, Wu C. Interface tailoring for strain-hardening PVA- ECC[J]. ACI Materials Journal, 2002, 99(5): 463-472.
  • 10Wang S, Li V C. Engineered cementitious composites with high volume fly ash[J]. ACI Materials Journal, 2007, 104 (3), 233-241.

二级参考文献26

共引文献102

同被引文献160

引证文献19

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部