期刊文献+

梯度复合材料裂纹扩展路径和起裂载荷的有限元分析 被引量:5

Finite element analysis of crack propagation paths and crack initiation loads in graded composites
原文传递
导出
摘要 为了模拟功能梯度材料(FGM)在工程应用中可能会出现的断裂问题并计算相应的开裂载荷,通过编写用户自定义UEL子程序将梯度扩展单元嵌入到ABAQUS软件中模拟功能梯度材料的物理场,并编写交互能量积分后处理子程序计算裂纹尖端的混合模式应力强度因子(SIF),采用最大周向应力准则编写子程序计算裂纹的偏转角,并模拟了裂纹扩展路径,计算了裂纹的起裂载荷。讨论了材料梯度参数对裂纹扩展路径以及起裂载荷的影响规律。通过与均匀材料的对比,验证了功能梯度材料断裂性能的优越性。研究表明:外载平行于梯度方向时,垂直梯度方向的初始裂纹朝着等效弹性模量小的方向扩展,且偏转角在梯度指数线性时出现峰值,并随着组分弹性模量比的增加而变大;当外载和初始裂纹均平行于梯度方向时,材料等效弹性模量和断裂韧性的增加或者梯度指数的减小都导致起裂载荷变大。 To simulate fracture problems that might occur during the engineering service of functionally graded material (FGM) and calculate the corresponding crack initiation loads, graded extended finite element was embedded into ABAQUS software by user-defined subroutine UEL, and physical fields in functionally graded materials were simulated by finite element method. Mixed-mode stress intensity factors (SIFs) were calculated by interactive energy integral post-processing subroutine. Maximum hoop stress criterion was adopted in subroutines to calculate crack deflection angles, and to predict crack propagation paths and crack initiation loads in functionally graded materials were both predicted. Influences of material gradient parameters on cracking propagation paths and crack initiation loads were discussed. The improvement of fracture characteristics in graded composites was validated by comparing with homogeneous materials. The results show that the initial crack perpendicular to the gradient direction tends to propagate towards the part exhibiting lower equivalent elastic modulus, and the crack deflection angle peaks at linear gradient index, and increases with the elastic modulus ratio of constitutes. When the applied load and the initial crack are both parallel to the gradient direction, an increase in the equivalent elastic modulus and fracture toughness or a decrease in the gradient index all lead to an enhanced crack initiation load.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2015年第4期1099-1106,共8页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(11272146) 机械结构力学及控制国家重点实验室(南京航空航天大学)自主研究课题(0213G01) 江苏高校优势学科建设工程项目
关键词 梯度复合材料 最大周向应力准则 交互能量积分 裂纹扩展路径 起裂载荷 graded composites maximum hoop stress criterion interaction energy integral crack propagationpath crack initiation load
  • 相关文献

参考文献15

  • 1Shinno M, Hirai M, Watanabe R. Functionally graded mate- rials-super heat-resistant material application in cosmic ma-chine[J]. The Japanese Journal of Composite Materials, 1987, 13(6):257-264.
  • 2Jin Z H, Feng Y X. Thermal fracture resistance of a func- tionally graded coating with periodic edge cracks[J]. Surface and Coatings Technology, 2008, 202(17): 4189-4197.
  • 3金鑫,吴林志,于红军,等.功能梯度材料中材料梯度对裂纹扩展路径的影响[C].第十五届全国复合材料学术会议.哈尔滨:2008,4.
  • 4Yao X F, Xu W, Bai S L, et aL Caustics analysis of the crack initiation and propagation of graded materials[J], Com- posites Science and Technology, 2008, 68(3-4): 953-962.
  • 5Abanto-Bueno J, Lambros J. An experimental study of mixed mode crack initiation and growth in functionally graded mate rials[J]. Experimental Mechanics, 2006, 46(2): 179-196.
  • 6Tilbrook M T, Moon R J, Hoffman M. Crack propagation in graded composites[J]. Composites Science and Technology, 2005, 65(2): 201-220.
  • 7Rousseau C E, Tippur H V. Compositionally graded materi- als with crack normal to the elastic gradient[J]. Acta Materi- alia, 2000, 48(16): 4021-4033.
  • 8Kim J H, Paulino G H. On fracture criteria for mixed-mode crack propagation in functionally graded materials[J]. Me- chanics of Advanced Materials and Structures, 2007, 14(4): 227-244.
  • 9Comi C, Mariani S. Extended finite element simulation of quasi-britle fracture in functionally graded materials E J 1. Computer Methods in Applied Mechanics and Engineering, 2007, 196(41-44) : 4013-4026.
  • 10Steigemann M, Specovius-Neugebauer M, Fulland M, et al. Simulation of crack paths in functionally graded materials[J]. Engineering Fracture Mechanics, 2010, 77(11): 2145-2157.

二级参考文献19

  • 1黄干云,汪越胜,余寿文.功能梯度材料的平面断裂力学分析[J].力学学报,2005,37(1):1-8. 被引量:45
  • 2李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35(1):5-20. 被引量:132
  • 3Lee Y D, Erdogan F. Residual stresses in FGM and laminated thermal barrier coatings[J]. International Journal of Fracture, 1994-1995, 69(2): 145-165.
  • 4Jin Z H, Feng Y Z. Thermal fracture resistance of a functionally graded coating with periodic edge cracks [J]. Surface and Coatings Technology, 2008, 202(17): 4189- 4197.
  • 5Dclale F, Erdogan F. The crack problem for nonhomogeneous plane[J]. journal of Applied Mechanics, 1983, 50(3): 609 614.
  • 6Konda N, Erdogan F. The mixed mode crack problem in a nonhomogeneous elastic medium[J]. Engineering Fracture Mechanics, 1994, 47(4) : 533-545.
  • 7Erdogan F. The crack problem for bonded nonhomogeneous materials under antiplane shear loading [J]. Journal of Applied Mechanics, 1985, 52(4): 823-828.
  • 8Anlas G, Santare M H, Lambros J. Numerical calculation of stress intensity factors in functionally graded materials [J]. International Journal of Fracture, 2000, t04(2): 131-143.
  • 9Kim J- H, Paulino G H. Finite element evaluation of mixed mode stress intensity factors in functionally graded materials [J] International Journal for Numerical Methods in Engineering, 2002, 53(8): 1903-1935.
  • 10Kim J-H, Paulino G H. An accurate scheme for mixed-mode fracture analysis of functionally graded materials using the interaction integral and micromechanics models [J]. International Journal for Numerical Methods in Engineering, 2003, 58(10): 1457-1497.

共引文献5

同被引文献51

  • 1景绿路.国外增材制造技术标准分析[J].航空标准化与质量,2013(4):44-48. 被引量:30
  • 2卢观健,杨克.钢轨伤损的形态特征及其失效机理[J].铁道学报,1996,18(3):120-124. 被引量:21
  • 3范华林,金丰年,方岱宁.格栅结构力学性能研究进展[J].力学进展,2008,38(1):35-52. 被引量:31
  • 4REN H S, LIU D, TANG H B, et al.Microstructure and mechanical properties of agraded structural material[J]. Materials Scienceand Engineering: A, 2014. 611(12): 362-369.
  • 5OBIELODAN J, STUCKER B.Characterization of LENS-fahrioated Ti6A14Vand Ti6A14V/TiC dual-material transitionjoints[J]. International Journal of AdvancedManufacturing Technology, 2012, 66(9-12):2053-2061.
  • 6LIANG Y J. LIU D, WANG H M.Microstructure and mechanical behavior ofcommercial purity Ti/Ti - 6A1 - 2Zr - IMo IVstructurally graded material fabricated by laseradditive manufacturing[J]. Scripta Materialia,2014,74: 80-83.
  • 7REN H S, TIAN X J, WANG H M.Effect of heat treatment on microstructure andmechanical properties of a graded structuralmaterial[J]. Materials Science and Engineering: A,2014,614: 207-213.
  • 8The future \yy Airhus[EB/OL].[2016-03-05]. http://www.airl)us.com/innovation/future-hy-airhus/lhe-concept-plane/the-airhus-concept-cahin/future-technologifis/?coiitentI<l=%5B_TABLE%3Att_content%3B_FIELD%3AuM%5n%2C&cHash=22935adfac92fchhd4ha4e 1441dl 3383.
  • 9STEEVES C A, HE M Y,KASEN S D,et al. Feasibility of metallic structural heat pipesas sharp leading edges for hypersonic vehic.les[J].Journal of Applied Mechanics, 2009,76(3): 540-545.
  • 10TANG H P, QIAN M, LIU N, etal. Effect of powder reuse times on additivemanufacturing of Ti-6A1-4V hy selectiveelectron beam melting[J|. The Journal of TheMinerals, Metals & Materials Society, 2015, 67:555-563.

引证文献5

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部