摘要
一元数量函数的拉格朗日中值定理在微积分中具有重要的地位,正因为如此,众多学者把它推广到矢性(向量)函数中,得到了一系列结论.但是,很少有人注意到从数量函数到矢性函数拉格朗日中值定理的差异,微分中值的不统一性.经研究发现,对一般三维空间中的矢性函数A(t),微积分中的拉格朗日中值定理不再成立.但是,当是A(t)三维空间中的平面曲线时,有类似于拉格朗日中值定理的结论.最后给出空间曲线相应的结论的充要条件.
Lagrange Mean -- Value theorem of a single variable function has an important position in the calculus, and because of that, many scholars tried to generalize it into vector functions, obtaining a series of conclusions. But, very few people notice the differences from number function to the vector function of Lagrange theorem;Differential median inconsistencies. This paper points out that for the general vector functionA(t) in R3 , the Lagrange theorem is no longer valid. However, as long as A(t) is a plane curve in R3 , an analogous Lagrange theorem holds. This paper also gives a sufficient and necessary'condition of the space curve for which the analogous Lagrange theorem holds.
出处
《高等数学研究》
2015年第2期18-19,22,共3页
Studies in College Mathematics
基金
山东科技大学教育教学研究"群星计划"重点资助项目(编号qx2013145)
关键词
矢性函数
空间曲线
中值定理
切向量
存在性
vector function
space curve
mean value
tangent vector
existence