期刊文献+

关联运输调度问题的混合混沌量子算法研究

Hybrid Chaotic Quantum Evolutionary Algorithm for Incident Vehicle Routing Problem
下载PDF
导出
摘要 考虑实际生活中商品供应商具有严格的营业时间限制、客户的个性化送货时间预设等因素,建立带客户硬时间窗、车场硬时间窗、多车场多车型等约束的关联运输调度问题模型。针对量子进化算法计算时间长、收敛速度慢以及容易出现早熟等问题,采用混沌初始化方法产生初始种群,使种群具有较好的多样性;采用简单量子旋转门更新当前种群中的非最优个体,减少算法的计算时间;提出混合混沌搜索策略提高算法的收敛速度和全局搜索能力,构造了混合混沌量子进化算法。对50客户规模的算例进行仿真表明提出的IVRP优于一般的VRP,可节约大量成本,证明其模型的有效性,且该算法在收敛速度和寻优结果两方面略优于自适应遗传算法和量子算法。 Considering these factors,such as suppliers have strict operating time limit,customers have the preset personalized delivery time,etc.,establishing the incident vehicle routing problem( IVRP) mathematical model based on clients' hard time windows,depots' hard time windows,heterogeneous vehicles etc. In order to reduce computation time,speed up convergence and restrain premature phenomena of quantum evolutionary algorithm( QEA). Using the chaotic initialization method to generate initial population can improve diversity,adapting quantum rotation gate to update non-optimal individuals of population to reduce the computation time,moreover,hybrid chaotic search strategy to speed up its convergence and enhance its global search ability,thus the hybrid chaotic quantum evolutionary algorithm( HCQEA) was constructed. Using this algorithm to solve 50 clients IVRP model.Experiments show that IVRP is superior to general VRP,it can save cost greatly. As a whole,HCQEA is slightly better than AGA and QEA in convergence speed and optimal results,and the proposed model is effective.
出处 《东莞理工学院学报》 2015年第5期49-56,共8页 Journal of Dongguan University of Technology
基金 国家自然科学基金(61074147) 广东省自然科学基金(S2011010005059) 广东省教育部产学研结合项目(2012B091000171 2011B090400460) 广东省科技计划项目(2012B050600028) 广州市花都区科技计划项目(HD14ZD001) 嘉应学院自然科学科研项目(2015KJZ05)
关键词 关联运输调度问题 量子进化算法 混沌搜索 自适应 多车场多车型 incident vehicle routing problem quantum evolutionary algorithm chaotic search self-adaption multi-depot and heterogeneous
  • 相关文献

参考文献20

  • 1Azi N, Gendreau M, Potvin J Y. An adaptive large neighborhood search for a vehicle routing problem with multiple routes [ J]. Computers & Operations Research, 2014, 41 : 167 - 173.
  • 2Michallet J, Prins C, Amodeo L, et al. Multi - start iterated local search for the periodic vehicle routing problem with time windows and time spread constraints on services[ J ]. Computers & Operations Research, 2014, 41: 196- 203.
  • 3Mohammed A M, Elheflaawy N A, E1 - Sherbiny M M, et al. Quantum crossover based quantum genetic algorithm for solving non - linear pro- grammin[ C]//Informatics and Systems ( INFOS). 2012 8th International Conference on. IEEE. 2012. BIO - 145 - BIO - 153.
  • 4蔡延光,张敏捷,蔡颢,章云.混合混沌量子进化算法[J].系统工程理论与实践,2012,32(10):2207-2214. 被引量:14
  • 5Cui L, Wang L, Deng J, et al. A new improved quantum evolution algorithm with local search procedure for capacitated vehicle routing problem[ J ]. Mathematical Problems in Engineering, 2013 : 17.
  • 6Wang L, Kowk S K, Ip W H. Design of an improved quantum - inspired evolutionary algorithm for a transportation problem in logistics systems [J]. Journal of Intelligent Manufacturing, 2012, 23(6) : 2227 -2236.
  • 7葛显龙,王旭,代应.基于混合量子遗传算法的随机需求车辆调度问题[J].系统工程,2011,29(3):53-59. 被引量:14
  • 8Zhang J, Wang W, Zhao Y, et al. Multiobjective quantum evolutionary algorithm for the vehicle routing problem with customer s atisfactiou [ J]. Mathematical Problems in Engineering, 2012:19.
  • 9Michallet J, Prins C, Amodeo L, et al. Multi - start iterated local search for the periodic vehicle routing problem with time windows and time spread constraints on services[ J]. Computers & operations research, 2014, 41 : 196 -207.
  • 10Crispin A, Syrichas A. Quantum Annealing Algorithm for Vehicle Scheduling[ C]//Systems, Man, and Cybernetics ( SMC), 2013 IEEE In- ternational Conference on. IEEE, 2013 : 3523 -3528.

二级参考文献122

共引文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部