期刊文献+

光通信用石墨烯基纳米复合材料的光电性能研究

Photoelectric performance of graphene-based nano-composites for optical communication
下载PDF
导出
摘要 采用湿化学法制备了性能良好的石墨烯(G)/氧化锌(ZnO)纳米复合材料,利用X射线衍射分析仪、扫描电镜及透射电镜对其物理结构和形貌分析可知成功地合成了石墨烯/氧化锌的纳米颗粒,氧化锌纳米颗粒大小约为50 nm。分别将石墨烯/氧化锌纳米复合材料、石墨烯和氧化锌均匀地分散到聚甲基丙烯酸甲酯(PMMA)中通过浇铸法合成G/ZnO/PMMA有机玻璃、ZnO/PMMA和G/PMMA有机玻璃,对比可得,G/ZnO/PMMA的非线性光学散射特性、非线性光学吸收特性及紫外-可见光吸收特性较ZnO/PMMA和G/PMMA有机玻璃有了明显提高。 Graphene-zinc oxide nano-composite materials with good performance were prepared by wet chemical methods. The results show that graphene/zinc oxide nanoparticles are synthesized successfully and analyzed by X-ray diffraction analyzer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The size of ZnO nanoparticles is about 50 nm. G/ZnO/PMMA organic glass, ZnO/PMMA and G/PMMA organic glass were synthesized successfully by dispersing graphene/ZnO nanocomposite, graphene and zinc oxide in polymethyl methacrylate (PMMA) respectively by the casting method. Nonlinear optical scattering characteristics, nonlinear optical absorption properties and ultraviolet-visible absorption characteristics of G/ZnO/PMMA are all better than those of ZnO/PMMA and G/PMMA organic glass.
出处 《电子元件与材料》 CAS CSCD 2015年第11期40-43,共4页 Electronic Components And Materials
关键词 石墨烯 氧化锌 Z扫描测试 紫外-可见光吸收光谱 非线性光学散射 graphene zinc oxide Z-scan test UV-visible absorption spectrum nonlinear scattering characteristics
  • 相关文献

参考文献4

二级参考文献20

  • 1杨季冬,张书然,刘绍璞.同步-偏振-导数荧光法同时测定三种苯二酚异构体的研究[J].化学学报,2007,65(20):2309-2314. 被引量:7
  • 2Penner N A, Nesterenko P N, Rybalko M A. Use of hypererosslinked polystyrene for the determination of pyrocatechol, resoreinol, and hydroquinone by reversed phase HPLC with dynamic on-line preeoncentration[J]. J Anal Chem, 2001,56 (10):934-939.
  • 3Guo Q H, Huang J S, Chen P Q, et al. Simultaneous determination of catechol and hydroquinone using electrospun carbon nanofibers modified electrode[J]. Sensors and Actuators B: Chemical, 2012, 163 (1): 179-185.
  • 4Mohamed A G. Electrocatalytic activity and simultaneous determination of catechol and hydroquinone at mesoporous platinum electrode [J]. Electrochem Commun, 2007,9 (10) : 2501-2506.
  • 5Kuilaa T, Bosea S, Khanraa P, et al. Recent advances in graphene-based biosensors [j]. Biosens Bioelectron, 2011,26 (12): 4637-4648.
  • 6Uhm S, Tuyen N H, Lee J. Controlling oxygen functional species of graphene oxide for an electro-oxidation of L-ascorbic acid[J] Electrochem Commun, 2011,13: 677-680.
  • 7William S, Hummers J R, Richard E O. Preparation of graphitic oxideJ]. J Am Chem Soc, 1958,80: 1339.
  • 8BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemic Internation- al Edition, 2008,47 (16) : 2930-2946.
  • 9PAEK S M,YOO E J,HONMA I. Enhanced cyclic performance and lithium storage capacity of SnOJgraphene nanoporous elec- trodes with three-dimensionally delaminated flexible structure [J]. Nano Letters, 2008,9(1): 72-75.
  • 10TIAN L, ZHUANG Q, LI J, et al. The production of self-assembled Fe:O3 - graphene hybrid materials by a hydrothermal process for improved Li-cycling[J]. Electroehimica Acta, 2012,65 : 153-158.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部