期刊文献+

一种NLOS量测平滑算法在MAUVs协同定位中的应用

A NLOS Measurement Smoothing Algorithm for Cooperative Localization in Multiple Autonomous Underwater Vehicles
下载PDF
导出
摘要 在基于双领航者的MAUVs协同定位过程中,为了减轻NLOS量测误差的影响,在假设NLOS修正偏差先验已知的前提下,以4状态Markov链描述了4种LOS/NLOS量测模型间相互独立转换过程,继而利用交互多模和Kalman滤波理论设计了一种AUVs间相对距离量测平滑算法,并将其距离量测估计结果应用于MAUVs协同定位系统中。仿真结果对比表明,该算法可以有效提高AUVs间的相对距离量测估计精度,获得了更好的协同定位性能。 In the process of MAUVs cooperative localization based on two leaders, in order to mitigate the influence of NLOS measurement deviation, a four state Markov chain is used to describe the switch process among four LOS/ NLOS range measurement models which are independent of each other. Then we design a relative range measure- ment smoothing algorithm by combining the IMM and Kalman filter theory among AUVs, and the range measurement estimation results are applied to the MAUVs cooperative localization system. Simulation results and their analysis indicate preliminarily that the proposed algorithm does improve effectively the estimation accuracy of relative range measurement among AUVs. Moreover, also better than that of conventional method. the performance of the corresponding cooperative localization is also better than that of conventional method.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2015年第5期854-859,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(61273333)资助
关键词 非视距量测 交互多模 多自主水下航行器 协同定位 algorithms, autonomous underwater vehicles, computer simulation, covariance matrix, design, effi-ciency, errors, estimation, Kalman filters, Markov processes, mathematical models, MATLAB,mean square error, measurement errors, measurements, probability, trajectories cooperative locali-zation, interacting multiple models, multiple AUVs (MAUVs), non line of sight measurement
  • 相关文献

参考文献8

  • 1Willcox S, Goldberg D, VaganayJ, CurcioJ. Multi-Vehicle Cooperative Navigation and Autonomy with Bluefin CADRE System[C] //International Federation of Automatic Control Conference(IFAC) , 2006: 1-6.
  • 2Diamant R, Tan H, Lampe L. LOS and NLOS Classification for Underwater Acoustic Localization[J]. IEEE Trans on Mobile Computing, 2014, 13(2) : 311-323.
  • 3Emokpae L, DiBenedetto S, Potteiger B, Younis M. UREAL: Underwater Reflection-Enabled Acoustic-Based Localization[J]. IEEE SensorsJournal, 2014, 14( 11) : 3915-3925.
  • 4Yu K, Guo Y. Improved Positioning Algorithms for Nonline-of-Sight Environment[J], IEEE Trans on Vehicular Technology, 2008, 57 ( 4) : 2342-2353.
  • 5Nawaz S, Trigoni N. Convex Programming Based Robust Localization in NLOS Prone Cluttered Enviroments[C] // 10th International Conference on Information Processing in Sensor Networks ( IPSN) , 2011: 318-329.
  • 6Vaghefi R, Buehree R. Cooperative Sensor Localization with NLOS Mitigation Using Semidefinite Programming[C] 119th Workshop on Positioning Navigation and Communication (WPNC), 2012: 13-18.
  • 7Yu K, Dutkiewicz E. NLOS Identification and Mitigation for Mobile Tracking[J]. IEEE Trans on Aerospace and Electronic Systems, 2013, 49(3): 1438-1452.
  • 8LiaoJ, Chen B. Robust Mobile Location Estimator with NLOS Mitigation Using Interacting Multiple Model Algorithm[J]. IEEE Trans on Wireless Communications, 2006, 5 ( 11) : 3002-3006.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部