期刊文献+

真核蛋白质的亚细胞位点预测研究进展

Progress in Predicting Subcellular Localizations of Eukaryotic Proteins
原文传递
导出
摘要 研究真核蛋白质的亚细胞位点是了解真核蛋白质功能,深入研究蛋白质相关信号通路内在机制的基础。同时,可以为了解疾病发病机制及为新药研发提供帮助。因此,研究真核蛋白质的亚细胞位点意义十分重大。随着基因组测序的完成,真核蛋白质序列信息增长迅速,为真核蛋白质亚细胞位点的研究提出了更多的挑战。传统的实验法难以满足蛋白质信息量迅速增长的需求。而采用生物信息学手段处理大规模数据的计算预测方法,可在较短时间内获得大量真核蛋白质亚细胞位点信息,弥补了实验法的不足。因此,运用计算预测法预测真核蛋白质的亚细胞位点成为生物信息学领域的研究热点之一。本文主要从提取真核蛋白质的特征信息、计算预测方法及预测效果的评价三个方面,介绍近年来真核蛋白质亚细胞位点预测的研究进展。 Identification of eukaryotic protein subcellular localization is very important for understanding eukaryotic protein functions and internal mechanisms of related signal pathways. Meanwhile, it contributes to revealing the pathogenesis of diseases and the development of new drugs. Consequently, it is of great significance to study eukaryotic protein subcellular localization. With the completion of genome sequencing, the information of eukaryotic protein sequences increases rapidly, which brings more challenges to identify eukaryotic protein subcellular localization. Since experimental determinations of eukaryotic protein subcellular localization are tedious, costly and time-consuming, especially for rapidly growing information of proteins, it is highly desirable to develop computational approaches to predict eukaryotic protein subcellular localizations. This paper mainly introduces the progress in predicting eukaryotic protein subcellular localization among the past years. It consists of three aspects: protein feature representation, algorithm selection for classification and assessment of prediction.
出处 《现代生物医学进展》 CAS 2015年第28期5582-5585,共4页 Progress in Modern Biomedicine
基金 国家自然科学基金项目(81302134)
关键词 真核蛋白质 亚细胞位点 预测 算法 Eukaryotic protein Subcellular localization Prediction Algorithm
  • 相关文献

参考文献38

  • 1Cao JZ, Liu WQ, He JJ, et al. Mining proteins with non-experimentalannotations based on an active sample selection strategy forpredicting protein subcellular localization [J].PLoS One, 2013, 8(6):e67343.
  • 2Zhang S, Xia X, Shen J, et al. DBMLoc: a database of proteins withmultiple subcellular localizations [J].BMC Bioinformatics, 2013, 9(2): 127.
  • 3He J, Gu H, Liu W. Imbalanced multi-modal multi-label learning forsubcellular localization prediction of human proteins with both singleand multiple sites[J].PLoS One, 2012,7(6): e37155.
  • 4Tang S, Li T,Cong P, et al. PlantLoc: an accurate web server forpredicting plant protein subcellular localization by substantialitymotif[J].Nucleic Acids Res, 2013,41 (Web Server issue): W441-W447.
  • 5Nakashima H, Nishikawa K. Discrimination of intracellular andextracellular proteins using amino acid composition and residue-pairfrequencies[J].J Mol Biol, 1994,238 (1): 54-61.
  • 6Chou KC. Prediction of protein cellular attributes using pseudo-aminoacid composition [J].Proteins: Structure, Function, and Genetics,2001,43(3): 246-255.
  • 7Wang W, Geng XB, Don YC. Predicting protein subcellularlocalization by pseudo amino acid composition with a segment-weighted and features-combined approach [J].Protein Pept Lett,2011,18(5): 480-487.
  • 8Liao B, Jiang JB, Zeng QG, et al. Predicting apoptosis proteinsubcellular location with PseAAC by incorporating tripeptidecomposition[J].Protein Pept Lett, 2011,18(11): 1086-1092.
  • 9Du PF, Wang X,Xu C,et al. PseAAC-Builder: a cross-platformstand-alone program for generating various special Chou'spseudo-amino acid compositions [J].Anal Biochem, 2012, 452(2): 117-119.
  • 10Cao DS, Xu QS, Liang YZ. Propy: a tool to generate various modesof Chou's PseAAC [J].Bioinformatics, 2013,29(7): 960-962.

二级参考文献47

  • 1Alberts B,Johnson A,Lewis J,Raft M,Roberts K,Walter P. Molecular biology of the cell[M].New York:Garland Science,2002.
  • 2Nishikawa K,Kubota Y,Ooi T. Classification of proteins into groups based on amino acid composition and other characters[J].{H}Journal of Biochemistry,1983.997-1007.
  • 3Bork P,Eisenhaber F. Wanted:subcellular localization of proteins based on sequence[J].{H}Trends in Cell Biology,1998.169-170.
  • 4Drawid A,Gerstein M. A Bayesian system integrating expression data with sequence patterns for localizing proteins:comprehensive application to the yeast genome[J].{H}Journal of Molecular Biology,2000.1059-1075.
  • 5Rusch SL,Kendall DA. Protein transport via amino-terminal targeting sequences common themes in diverse systems[J].{H}MOLECULAR MEMBRANE BIOLOGY,1995.295-307.
  • 6Horton P,Nakai K. A probabilistic classification system for predicting the cellular localization sites of proteins[J].Proc Int Conf Intell Syst Mol Biol,1996.109-115.
  • 7Lodish H,Berk A,Zipursky SL,Matsudaira P,Baltimore D,Darnell J. Molecular cell biology[M].New York:W.H.Freeman,2000.
  • 8Cooper GM,Hausman RE. The cell:a molecular approach[M].Washington:ASM Press,and Sunderland:Sinauer Associates,2009.
  • 9Reinhardt A,Hubbard T. Using neural networks for prediction of the subcellular location of proteins[J].{H}Nucleic Acids Research,1998.2230-2236.
  • 10Emanuelsson O,Nielsen H,Brunak S,von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence[J].{H}Journal of Molecular Biology,2000.1005-1016.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部