期刊文献+

担载b-FGF的PLGA微球复合明胶支架的体外释放研究 被引量:1

In Vitro Release Research of Gelatin Scaffold with PLGA Microspheres Containing Basic Fibroblast Growth Factor
原文传递
导出
摘要 目的:研究担载碱性成纤维细胞生长因子(b-FGF)微球复合明胶支架的外形特征、孔径、孔隙率及体外释放动力学,以期构建具有缓释功能、高孔隙率的担载细胞因子的新型复合明胶支架。方法:本文利用冷冻相分离法和S/O/W法先将b-FGF水溶液包裹于PLGA微球中,然后埋置于明胶溶液中制备为多孔复合明胶支架。分别对微球的形态和复合明胶支架的基本形态、孔径、孔隙率进行表征,通过Elisa法测定b-FGF在复合明胶支架中的体外释放行为。结果:制备成形态良好的三维复合明胶支架,其孔隙率为82.90%±1.45%,孔径范围为150~300μm,复合明胶支架中b-FGF在体外缓慢释放20余天。结论:担载蛋白微球复合明胶支架不仅满足组织工程支架的要求,还能有效缓释细胞因子,为细胞和组织生长提供良好的微环境,为进一步应用于组织工程领域提供了可能。 Objective: To investigate the characterization, the pore size and the porosity ratio of gelatin scaffold with PLGA microspheres containing basic fibroblast growth factor and its release behavior in vitro of b-FGF, for constructing a new composite gelatin scaffold loaded growth factor with sustain-released and high porosity ratio. Methods: By the frozen phase separation method and S/O/W method b-FGF aqueous solution prepared into PLGA microspheres, then embedded into gelatin-scaffold to form the final composite scaffold. The morphology of microspheres and gelatin scaffold, the pore size and the porosity ratio of gelatin scaffold were characterized and release kinetic of b-FGF in composite gelatin scaffold was detected by Elisa method in vitro. Results: The composite three-dimensional(3D) scaffold had good morphology with the porosity ratio of 82.90%±1.45% and the pore sizes ranging from 150 to 300 μm. In vitro,b-FGF in composite gelatin scaffold had sustained release over 20 days. Conclusion: The gelatin scaffold with PLGA microspheres containing growth factor is not only satisfied the requirements of tissue engineering scaffolds, but also sustained release growth factor for providing a microenvironment to cells and tissue growth and further application to tissue engineering in future.
出处 《现代生物医学进展》 CAS 2015年第29期5606-5608,5620,共4页 Progress in Modern Biomedicine
基金 国家自然科学基金项目(81102406)
关键词 B-FGF PLGA微球 复合支架 组织工程 b-FGF PLGA microspheres Composite scaffold Tissue engineering
  • 相关文献

参考文献23

  • 1Halime Kenara, Gamze T Koseb, Mehmet Toner, et al. A 3D aligned microfibrous myocardial tissue construct cultured under transient per- fusion[J]. Biomaterials, 2011, 32(23): 5320-5329.
  • 2T Morotomi, M. Wada, M Uehara, et al. Effect of Local Environment, Fibrin, and Basic Fibroblast Growth Factor Incorporation on a Canine Autologous Model of Bioengineered Cartilage Tissue [J]. Cells Tis- sues Organs, 2012, 196(5): 398-410.
  • 3Shuo Tang, Jixiang Zhu, Yangbin Xu, et al. The effects of gradients of nerve growth factor immobilized PCLA scaffolds on neurite out- growth in vitro and peripheral nerve regeneration in rats[J]. Biomate- rials, 2013, 34(29): 7086-7096.
  • 4Yan Bai, Guangfu Yiu, Zhongbing Huang, et al. Localized delivery of growth factors for angiogenesis and bone formation in tissue engi- neering[J]. International Immunopharmaeology, 2013, 16(2): 214-223.
  • 5Davis ME, Hsieh PC, Grodzinsky A J, et al. Custom design of the ear- dac 8-15 with bio- materials [J]. Circ Res, 2005, 97(1).
  • 6Sokolsky-Papkov M, Agashi K, Olaye A, et al. Polymer carriers for drug delivery in tissue engineering[J]. Adv Drug Deliv Rev, 2007, 59 (4-5): 187-206.
  • 7Kangwon Lee, Eduardo A Silva, David J Mooney. Growth factor de- livery-based tissue engineering: general approaches and a review of recent developments[J]. Interface, 2011, 8(55): 153-170.
  • 8Hojjat Naderi, Maryam M Matin, Ahmad Reza Bahrami. Critical iss- ues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems[J]. Journal of Biomaterials Applications, 2011, 26(4): 383-417.
  • 9Doris Gabriel, Tal Dvir, Daniel S Kohane. Delivering bioactive molecules as instructive cues to engineered tissues [J]. Drug Deliv, 2012, 9(4): 473-492.
  • 10Jillian E Tengood, Ryan Ridenour, Ross Brodsky, et al. Sequential Delivery of Basic Fibroblast Growth Factor and Platelet-Derived Growth Factor for Angiogenesis[J]. Tissue Engineering part A, 2011, 17(9-10): 1181-1189.

同被引文献19

  • 1任劼,蒋玉航,肖兴皓,吴飞.多糖颗粒复合PLGA微球用于脉冲式释药系统的研究[J].现代生物医学进展,2009,9(24):4759-4761. 被引量:3
  • 2Gomez-Guillrn M C, Gimrnez B, Lrpez-Caballero M E, et al. Func- tional and bioactive properties of collagen and gelatin from alterna- tive sources: A review[J]. Food Hydrocolloids, 2011, 25(8): 1813-1827.
  • 3Roman S, Mangera A, Osman N I, et al. Developing a tissue engi- neered repair material for treatment of stress urinary incontinence and pelvic organ prolapse-which cell source?[J]. Neurourology and urody- namic, 2014, 33(5): 531-537.
  • 4Harrington D J. Bacterial collagenases and collagen-degrading enzy- mes and their potential role in human disease[J]. Infection and immu- nity, 1996, 64(6): 1885.
  • 5Kareem A, Hassan S. Determination the genotyping diversity between biofilm forming and collagenase producing Pseudomonas aeruginosa strains[J]. Journal of Natural Sciences Research, 2014, 4(23): 178-185.
  • 6Lacey J, Goodfellow M, Alderson G. The genus Aetinomadura Leehevalier and Lechevalier [J]. Zentralbl Bakteriol Suppl, 1978, 6: 107-117.
  • 7Chen T, Xu B, Liu J C, et al. Effects of hyperbaric oxygen on aggres- sive periodontitis and subgingival anaerobes in Chinese patients [J]. Journal of Indian Society of Periodontology, 2012, 16(4): 492.
  • 8Navais R, Mendez J, Perez-Paseual D, et al. The yrpAB operon of Yersinia rockier encoding two putative U32 peptidases is involved in virulence and induced under micro aerobic conditions [J]. Virulence, 2014, 5(5): 619-624.
  • 9Peimer C A, Blazar P, Coleman S, et al. Dupuytren contracture recur- rence following treatment with collagenase clostridium histolyticum (CORDLESS study): 3-year data [J]. The Journal of hand surgery, 2013, 38(1): 12-22.
  • 10Lin E D. Methods for wound protection and therapy [P]. U.S. Patent Application, 2014, 147(14): 492.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部