期刊文献+

一种局部优化边界的支持向量数据描述方法 被引量:1

Support vector data description method with local optimization boundary
下载PDF
导出
摘要 针对传统的支持向量数据描述(SVDD)因未考虑数据构成的多模态性和局部分布的非同一性,难以获取目标数据的优化决策边界,所建立的数学模型难以正确反映建模对象的时空变化规律的问题,提出一种基于局部优化边界的支持向量数据描述(LOB-SVDD)方法。通过求取局部数据样本的分散程度获取支持向量机算法中折衷参数的局部调整系数,以此优化求解决策边界函数,由此可实现数据分类、离群点检测和数据建模等。利用UCI数据集和人工双模态数据集进行的仿真表明,与传统方法相比,LOB-SVDD可获得更优的决策边界,作为分类器有更低的假正率和假负率。应用LOB-SVDD对具有多模态特性的铜锍吹炼实际生产数据进行预处理,能有效检测离群点,剔除异常样本,实现数据洁净化。 Conventional support vector data description ( SVDD) , which did not consider multi-modal and local distribution difference of the data, failed to reflect time-space variety rule of the object and hard to gain the optimal decision boundary. To solve this difficulty, a new SVDD method with local optimization boundary ( LOB-SVDD) was proposed. First, the local dispersion degree of each data point was calculat-ed, then, the coefficient of trade-off parameters was adjusted with the local dispersion degree, finally, the quadratic programming problem was solved and an optimized boundary function was obtained. The method can be used in data classification, outlier detection and data modeling, etc. Experiments with UCI datasets and artificial dual mode datasets show that the method can gain a more optimal decision boundary compared to the conventional method, and as classifier it can gain lower false positives rate and false nega-tives rate. That method was applied to the multi-modal actual production data of copper matte converting process, and the results show that it can effectively detect outliers, eliminate abnormal sample data.
出处 《电机与控制学报》 EI CSCD 北大核心 2015年第10期93-99,共7页 Electric Machines and Control
基金 国家自然科学创新研究群体科学基金(61321003) 国家自然科学基金重点项目(61134006) 国家自然科学基金面上项目(61273169) 国家自然科学基金青年项目(61105080) 湖南省教育厅高等学校科研项目(13A016) 湘潭市科技计划项目(NY20141006) 湖南省自然科学基金项目(14JJ2099)
关键词 支持向量数据描述 决策边界 折衷参数 数据预处理 support vector data description decision boundary trade-off parameter data pre-processing
  • 相关文献

参考文献14

  • 1TAX D M J, DUIN R P W. Support vector domain description[ J] Pattern Recognition Letters, 1999, 20 ( 11 ) : 1191 - 1199.
  • 2TAX D M J, DUIN R P W. Support vector data description [ J ] Machine Learning, 2004, 54 ( 1 ) : 45 - 66.
  • 3方景龙,王万良,王兴起,龙哲,祁萌.求解多示例问题的支持向量数据描述方法[J].电子学报,2013,41(4):763-767. 被引量:2
  • 4曲建岭,孙文柱,邸亚洲,高峰,周玉平.面向新异检测的启发式约减支持向量数据描述[J].控制与决策,2014,29(10):1783-1787. 被引量:3
  • 5TAX D M J, JUSZCZAK P. Kernel whitening for one-class classifi- cation[ J]. International Journal of Pattern Recognition and Artifi- cial Intelligence, 2003, 17(03) : 333 -347.
  • 6LIU B, XIAO Y, CAO L, et aL SVDD-based outlier detection on uncertain data[J]. Knowledge and Information Systems, 2013, 34 (3) : 597 -618.
  • 7CHA M, KIM J S, BAEK J G. Density weighted support vector data description[ J]. Expert Systems with Applications, 2014, 41 (7): 3343 - 3350.
  • 8REHMAN Z, LI T, YANG Y, et al. Hyper-e]lipsoidal clustering technique for evolving data stream [ J ]. Knowledge-Based Systems, 2013.
  • 9MIZUTANI T. Ellipsoidal rounding for nonnegative matrix factoriza- tion under noisy separability [ J ]. Journal of Machine Learning Re-search, 2014, 15:1011 -1039. 111.
  • 10WANG C D, LAI J H. Position regularized support vector domain description[ J ]. Pattern Recognition, 2013, 46(3) : 875 -884.

二级参考文献31

  • 1Dietterich T G, Lathrop R H, et al. Solving the multiple-in- stance problem with axis-parallel rectangles[ J]. Artificial Intel- ligence, 1997,89 ( 1 - 2) : 31 - 71.
  • 2Maron O, Lozano-p6rez T. A framework for multiple-instance learning[ A ]. Proceedings of the 1997 Advances in Neural In- formation Processing Systems Conference [ C ]. Cambridge, MA: M1T Press, 1998.570 - 576.
  • 3Andrews S, Hofmann T, et al. Support vector machines for multiple-instance learning[ A ]. Peedings of the 2002 Ad- vances in Neural Information Processing Systems Conference [ C]. Cambridge, MA: MIT Press, 2003.561 - 568.
  • 4Chen Y, Wang J Z. Image categorization by learning and rea- sorting with regions[ J] .Journal of Machine Laming Research, 2004,5:913 - 939.
  • 5Chen Y, Bi J, et al. MILFS: multiple-instance learning via em- bedded instance selection [ J ], IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(12) : 1931 - 1947.
  • 6Li Y F, Kwok J T, et al. A convex method for locating regions of interest with multi-instance learning[ A]. Proceedings of the Conference on Machine I.e.aming and Principles and Practice of Knowledge Discovery in Databases [ C ]. Bled, Slovenia: Springer,2009.15 - 30.
  • 7Li W J, Yeung D Y.Mmultiple-instance learning via dis- ambiguation [ J ]. IEEE, Transactions on Knowledge and Data Engineering, 2010,22(1) : 76 - 89.
  • 8Rahmani R, Goldman S A. MISSL: multiple-instance semi-su- pervised learning [ A ]. ngs of the 23rd international conference on Machine learning[ C ]. New York: ACM, 2006. 705 - 712.
  • 9Zhou Z H, Xu J M. On the relation between multi-instance learning and semi-supervised learning[ A ]. Proceedings of the 24th international conference on Machine learning [ C ]. New York: ACM,2007.1167 - 1174.
  • 10Wang H Y, Y ang Q, et al. Adaptive p-posterior mixture-model kernels for multiple instance learning[ A]. Proceedings of the 25th international conference on Machine learning [ C ]. New York:ACM,2008. 1136- 1143.

共引文献3

同被引文献3

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部